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1. Introduction

Many authorshavesoughta descriptionof Uq (g) andotherquantumgroups
as generated,in somesense,by afinite-dimensional‘quantum Lie algebra’via
somekind of envelopingalgebraconstruction (just as U (g) is the universal
envelopingalgebraof the Lie algebrag). Sucha notionwould beuseful since
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onewould only haveto work with the finite-dimensionalLie algebrainsteadof
thewholequantumgroup.It isalsoimportantfor geometricalapplicationswhere
we mightbe interestedin quantumvectorfields generatedby the actionnot of
generalelementsof the quantumgroup but by the actionof the ‘Lie algebra’
elements.

We are in a situationherewhere a new mathematicalconceptis needed:
quantumgroupsUq (g) havevariousinterestingchoicesof generatorsbut which
onesshouldwe look at, andwhat axiomsshouldtheyobey?Oneideawouldbeto
attemptto build this on g itselfbut with somekindof deformedbracketobeying
somekind of new axioms.In [10, Sec.2] wehaveinitiated adifferentapproach
basedon the subspace{l~Sl~}C Uq (g) (where l~arethe FRT generatorsof
Uq (g) [31).This subspaceis alreadywell-knownto beusefulfor certainkinds
of computationsandwe introducedon it somekind of ‘quantum Lie bracket’

basedon the quantumadjoint actionanddefinedby structureconstants
cL~K.This is recalledbriefly in Section2. Our goal in the presentpaperis to
developthisfurther into an axiomaticframework for this bracket.

The naturalbracketheredoesnot obey of coursethe Jacobi identities, but
ratherwe find that it obeysnaturallya ‘braided-Jacobiidentity’. In thisnotion,
which weintroduce,the Yang-Baxteroperatorassociatedto theactionof Uq (g)
in the adjoint representationplaysa centralrole. Armed with suitableidentities
we showquite generallythatbracketsobeying them allow oneto generatean
entire envelopingalgebra.

Theproblemof definingsomekind of braided-Liealgebrahasbeenan open
one for some time. The reasonis that in a braidedsetting the Yang-Baxter
operatoror braided-transpositionW doesnot havesquare1. As a result there
is no actionof the symmetricgroup and no notion of the Jacobi identity as
0 = [~,[~,~1I + cyclic. If we do supposethat W2 = id then we are in the
symmetric or unbraidedsituationas studiedin [4,21] andelsewhere.In this
situationeverythinggoesthroughjustasin thecaseof usualorsuper-Liealgebras.
Unfortunately,this caseis extremelysimilar to theusual or supercase(because
~Pbasically has eigenvalues±1)so no really new phenomenaare obtained.
Moreover, it is too restrictiveto dealwith quantumgroupsof interest,suchas
Uq(5l2).

Our approachto the problemis the following. In a seriesof paperswe have
introducedthe notion of braidedgroup, see [16,17,12] andothers.Theseare
a generalizationof quantumgroupsin which the elementsareallowedto have
braid statistics.Thismeansthat they live in abraidedtensorcategorywherethe
tensorproduct® is commutativeonly up to abraided-transposition~P.Most
importantlyfor usnow, we introducedthe notion of a braided-cocommutative
objectof this type. Only such braided-cocommutativeobjects could be truly
expectedto besomekind of envelopingalgebra.Thusweknowtheobjectwhich
wewishto emergeas theenvelopingalgebraof somekind of braided-Liealgebra.



S. Majid / Quantumandbraided-Lie algebras 309

By studyingthepropertiesof thebraided-adjointactionof suchobjects,we can
thendeducetheright propertiesof thebraided-Liealgebraitself. Thesebraided
groupsand the necessaryJacobi-likepropertiesof the braided-adjointaction
form thetopic of Section3.

In Section4 we takethe propertiesof the braided-adjointactionformally as
asetof axiomsfor abraided-Liealgebra.Herewe no longer assumethat we are
givenabraidedgroupbut ratherourmaintheoremis to showthatsuchbraided-
Lie algebrasindeedgenerateabraidedgroupor monoid. By the latterwemean
abialgebrain a braidedcategorywithout necessarilyan antipode.Our main
exampleis developedin Section5 wherewe see that the quantum-Liealgebras
of Section2 fit naturallyinto thisaxiomaticframework.Theconstructionworks
for a generalR-matrix and in this caseU (L~)recoversthe braidedmatrices
B(R) introducedin [171.Theretheywere introducedas a braidedversionofa
quantumfunctionalgebra(like functionson M~)but the samebraidedmatrices
ariseas abraidedenvelopingbialgebra.It is interestingthatonly after further
quotientingby determinant-type(andotherrelations)doesonerecoverprecisely
Uq (g) in this way: the braidedmatricesseemto be anaturalcoveringalgebra
of theseobjectsandyet havepropertieslike an envelopingalgebra.We have
alreadyidentified the braidedmatricescoveringUq (sl2) as aform of Sklyanin
algebraatdegenerateparametervalue [101,whichwe understandnow as U (L)

where£ is abraided-deformationof g12.
In a differentdirection we notethat the actionof such braided-Liealgebras

shouldnaturally be somekind of braided-vectorfield. We demonstratethis in
Section6 wherewecomputethe right-regularactionof thegeneratorsof Uq (g).
This was announcedin [81 andour goalhereis to give the full details.These
braided-vectorfieldsarecharacterisedby amatrix-Leibnizrule

(ab)~~= a•~’(b®~k)~f

andarethe left-invariant (andbicovariant)‘vector fields’ generatedby right-
translationsofthebraided-Liealgebrageneratorson thebraidedgroup.Thiscan
be contrastedwith otherconstructionsfor differential operatorson quantum
groups.The main differenceis that we abandonin our notion of braided-Lie
algebrasandbraided-vectorfields acommitmentto the usuallinearform of the
Leibniz rule. This is tied to the linear coproductAc~= çr® 1 + 1 0 çr~In general
for aquantumgroup thereare few such primitive elements.Instead,we work
moregenerallyandconsiderthe notionsassubordinateto achoiceof (braided)
coproductA. Aside from the standardlinear one, the matrix coproductthen
suggeststhis matrix notion of Lie algebrasandvectorfields. For expressions
thatreducein the classicallimit to usualinfinitesimalsoneneedonly work with

Finally, in Section 7 wegive anotherapplicationwherethe notion of a nat-
ural finite-dimensionalLie algebraobject is useful, namelyto the definition of
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braided-Killing form. This is providedby the quantumor braided-tracein the
adjoint representationof U(L) on L~.On the generatorsuL1 — onerecovers
in the classicallimit and for standardR-matricesthe usual Killing form. As
anunusualphenomenonwe find that the Killing form is madenon-degenerate
on g12 = sl2 ±u(1) by the pr.ocessof braidedq-deformation.Moreover,our
constructionswork for anybi-invertible R-matrix andwe giveformulaefor the
braided-Killing form gV in termsof it. In the invertible case it canbe used
to raiseandlower indices (i.e. to identify £ and£~)andis Ad-invariant and
braided-symmetricin a suitablesense.As an applicationof the braided-Killing
form we computethe correspondingquadraticCasimir

C = u’u~gjj

in this invertible case.

2. Quantum Lie algebras

Thissectionprovidessomemotivationfor the constructionsof thepaperfrom
the point of view of quantumgroups.It is perfectly possibleto proceeddirectly
to thebraidedversionin thenextsectionandreturnonly for somedetailsneeded
for the examplesin subsequentsections.Throughoutthe presentsectionsome
familiarity with quantumgroupsis assumed.We work over a field k or (with
care)acommutativering (thereadercankeepin mindC or C[ hi 1) andusethe
usualnotationsandmethodsfor a quasitriangularHopfalgebra (H,A, ~, S,Ri).
Here H is a unital algebra,A: H —~ H 0 H is the coproduct,�: H -~ k the
counit, S: H —p H theantipodeand (for astrict quantumgroup) 7?. E H 0 H
is the quasitriangularstructureor so-called ‘universal R-matrix’. It obeysthe
axiomsof Drinfeld [21,

(4®id)(7?.) = 7~13~23, (id®zl)(7Z) = 7?.137?.12,

~ h~®h~= R(Ah)7?.’. (1)

For an introductionone can see [15]. Here andbelow we use the Sweedler
notation [24] Ah = ~h(l)oh(2) for the coproduct.

The problemwhich we consideris the following. It is well-known that the
standardquantum-groups

0q (G) of function algebratype canbe obtainedby
an R-matrix methodas quotientsof the quantummatricesA (R) by determi-
nantandotherrelations [3]. On theotherhand, the known treatmentsof the
quantumenvelopingalgebrasto which thesearedual, arequite a bit different.
Thereis the approachof Drinfeld andJimboin termsof the roots [2,5] andan
approachin [3] with twice as manygenerators/±which haveto be cut down
somehow(usuallyby meansof someimaginativeansatz).These/±areroughly
speakingthe matrix elementsof the fundamentalandconjugate-fundamental
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representationof A (R). Herewerecall asomewhatdifferentapproachbasedon
the quantumKilling form anda singlebraided-matrixof generatorsu = (u1~)
anddevelopedin [10].

Just as Lie algebraslike si~can be definedboth via root systemsandvia
matrices,so we give in this way a matrix approachto the standardquantum
envelopingalgebras.At the sametimearemarkablecorrespondenceprinciple or
self-dualityemergesbetween°q(G) as a quotientof quantummatricesA (R)
andUq(g) as a correspondingquotientof the braidedmatricesB(R). In the
presentsectionwe shall try to givea self-containedpicture of this usingwell-
known quantumgroup formulaewithout too much direct dependenceon the
theoryof braidedgroups.

Let R in M~oM,~beaninvertiblematrixsolutionofthequantumYang-Baxter
equations(QYBE) R

12R13R23= R23R13R12.We recall thatA(R) denotesthe
matrix bialgebrawith generatorst = (t’~) andrelationsRt1t2 = t2t1R in the
usualcompactnotation (wherethe numericalsufficesreferto the positionin a
matrixtensorproduct).We recall alsothatB(R) denotesthe quadraticalgebra
with n

2 generators{u’
1} and 1, andrelations

RkaibUbcR~~jadUdI= U~CaR0b1cUCdR~j~li.e. R21u1R12u2= u2R21u1R12~
(2)

Theserelationshavebeenknownfor sometimeto be convenientfor describing
Uq (g) but theyhavebeenstudiedformally as a quadraticalgebrafor the first
timein [17]. We will cometo thebraidedaspectof [17] in Section5. Fornow
wejust work with B(R) as aquadraticalgebra.

Proposition 2.1. Thealgebra B(R) is dual to A (R) in thefollowingsense.Let
(H, 7?.) be a quasitriangularbialgebrawhich is duallypairedby (, ) with A(R)
suchthat (t~0(2,7?.) = R. Let

1 = (t®id)(Q), Q = 7?.~7?.~.

Herel’~areelementsofH. Then thereis an algebra mapB(R) —* Hsuchthat /
is the imageofu, i.e. H is a realizationofB(R).

Proof This ismotivatedby ideasfor Uq(g) implicit in theliterature,see [20,191.
The new part in our approachhowever, is to formulatethe result at the level
of bialgebras.Both A(R) and B(R) arequadraticalgebrasandno antipodeis
needed.Thisapproacharisesout of thetransmutationtheoryof braidedgroups
that relatedA (R) to B(R) in [13,12], wherewe showthe usefulidentity

l1R12l2 = R12(t1t2®id) (Q). (3)

To be self-containedwe canalsogivea direct proofof this easilyenoughas

l1R12l2 =
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= (
2)j~F(l )~~~Fm~(1)>(t2 )?~ (2)~1~_~(2)_J?~fh(1) )7?.(1)~/ (2)7?.!! (1 )p~,”’(2)

~ii1?.(l~7?.’’~’)‘J~’(2)p~/F!(2)(t
1 ~ ~)(t2, 7~_!I(2)7~~_1!!I(2)7~/!1(1 ))

=

= ~(‘i, 7?.m~m/(l)7?.(2)(l)7?.

1~(J))(t2, ~

= ~ = R
12(t1t2,Q~

1~)Q~21,

where7?.’,7?.” etc. denotefurthercopiesof 7?. = ~7?.(1) ®7?(2). For the second
equalitywe recognisedthe matrix form of the coproductof the t as pairedto
multiplication in H. For the third equality we usedthe QYBE for 7?.. For the
fourth andfifth weusedthe axioms (1) directly. We thenwrote the expressions
as productsin A(R) for the sixthequalityandrecognizedthe result.

By permuting the matrix position labels we have equally well /
2R21/1 =

R21(t2t1®id)(Q). Hence

R21/1R12l2= R21R12(tlt2 old) (Q) = R21 (12t1 ® id) (Q)R12 = /2R21/1R12,

usingthe relationsRt112 = t2t1R. fl

In this sensethen,B(R) is somekind of universaldualalgebrato A(R). Just
as A(R) hasto be cut down by determinantandotherrelationsto obtain an
honestHopf algebra, likewise if H is a Hopf algebra thenB(R) is generally
a little too big to coincide with H: it too has to be cut down by additional
relations.Notethatin thiscasewhereH isaHopfalgebratheelementaryidentity

= (S®id)(7?.)meansthat / = /~Sl relatingthis descriptionofH to the
FRT approachin [3]. For thenextpropositionweconcentrateon thosestandard
quantumgroupsUq (g) which canbe put in this FRT form (this includesthe
deformationsof at least the non-exceptionalsemisimpleLie algebras).

Proposition 2.2. [10] Let H = Uq (g) be ofFRTform [3] with associatedR-
matrixRandduallypairedwithA (R). Thenthe mapB(R) —~ Uq(g) haskernel
givenby ‘braided versions’of the determinantand other relations associatedto
theLiegroup G. HenceUq (g) can be identifiedas B (R) modulosuchrelations.

Proof Theargumentin [101 is as anon-trivial corollaryof the processof trans-
mutation [13]. Thisturns the matrix bialgebraA (R) into the braidedmatrix
B(R) andalso turns the quotient quantumgroups°q(G) into their braided
versionsBq (G). This is done in acategoricalway (by shifting categories)and
transmutesat the sametime all constructionssuchas quantumplanes,etc. on
which theseobjectsact. Hence (by theserathergeneralarguments)Bq (G) i5

obtainedin abraidedversionof the way that
0q (G) is obtained.On the other

hand,thereis alsoabraidedversionBUq (g) of Uq(g) coincidingas analgebra.
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Unlike theuntransmutedtheorythequantumKilling form Q: Bq (G) ,~ BUq (g)
is not just a linear mapbut a mapof braidedHopf algebras.For the standard
deformationsof semisimpleLie algebrasit is evenan isomorphism.This is
the generalreasonfor the correspondencebetween°q(G) and Uq (g) as quo-
tients of matrices.For a truly self-containedpicture one can of courseverify
the propositiondirectlyby computingin detailthe requiredquotientsofB(R).
Forexample,for Uq (sl2) onemustdivide BMq (2) by the braideddeterminant
ab—q

2cb= 1 [17]. 0

Notethatthe additionalrelationsneededto obtaina Hopfalgebralike Uq (g)
in this way from B(R) are such that thereexists a braidedantipodeS with
u~u= 1 = (~u)u. Thisexhibitstheremarkablesimilarity with whatis doneto
obtainaquantumgroupfrom A (R), but with onecatch: the matrix coproduct
Au = u ® u does not give abialgebrain the usualsense(it is not an algebra
homomorphismto the usualtensorproduct).This explainswhy for a full ap-
preciationof this approachonemustunderstandB (R) correctlyas abialgebra
with braid-statistics[17].

Even without sucha full picture, Proposition2.2 does,however,provide a
quickway ofcomputingUq (g) aswellasthecorrespondingquantumenveloping
algebrain a generalnon-standardbut factorizablecase.Namely, computethe
quadraticalgebraB(R) andthen imposefurther determinant-typeandother
relations.Factorizablemeanshereby definitionthat the mapfrom the relevant
dual of H to H given by evaluationagainstthe first factor of Q = 1?.21R-12

is asurjection [20]. Thisensuresin Proposition2.1 that for suchH the 1 are
generators.Note alsothat the existenceof aquasitriangularHopfalgebradually
pairedto A(R) is not possiblefor all R. A necessarycondition is that R hasa
secondinverseR= (t~0(2, (id®S)7?.) = ((Rt2)_l)t2 (wheret

2istransposition
in the secondmatrix factor).

For the moment we canjust note then that Uq (g) and in generalanyquasi-
triangularHopfalgebradual to A(R) hasa subspace

= span(l’j) c H. (4)

Proposition 2.3. [10]
(i) In thefactorizablecase[20], thesubspace£ = span(/ij) and 1 generateall

ofH.
(ii) Thesubspace1 is stableunderthe quantumadjoint action ofH on itself
(iii) Thequantumadjoint action asa map [, ]: £0 £ —* £ looksexplicitly like

rh ~Ji IJ iK IJ ~a Jo D—lb i0 Dk1 c ~m n
it ~~ = c Ki , c K = “ ii b

1’ k

3 c-

1~ n mIX a Ji

where1’ = l~o,1andl = (i
0,i1) is a multi-indexnotation(runningfrom (1,1),

..., (n,n)).
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Proof Again,theproofin [10] isbasedonthetheoryoftransmutationin [13,121.
The linear spaceof B (R) canbe identified with that of A (R) with thegener-
ators u = t identified (but not their productsas we haveseenabove).Then
(ii) is automaticbecause(transformsto alinear combinationunderthe quan-
tum coadjointaction,hencesodoesu underthe quantumadjoint action.To be
self-containedwe canalso give adirect proofusing morefamiliar methodsas
follows.

(i) In the presentsettingthis is (aswe havementioned)moreor lessby the
definition of factorizable.In ourusagethis notion is subordinateto the choice
of a bialgebraor Hopf algebraduallypairedwith H in the senseof [15]. Here
the choiceis A(R) or its quotientssuchas°q(G).

(ii) We usethe form 1 = l~Sl valid in theHopfalgebracaseandlet t~= Ad
denotethe quantumadjointactionof Honitself givenby h ~b = ~ h(l)bSh(2).
We showthat [14]

l~~ = R~l1R, l~~/2 = R12R’ (5)

usingthe definition of Ad, elementarypropertiesof the antipodeandthe fact
that l~obey the relationsR’l~l~= l~l~R

1andR1lj/~ = l~l~R’as
in [3] (Theserelationsarenot tiedto the standardUq (g) as in [3] if oneuses
the generalformulationin [15,141). Thus

~ (l
1~Slj) = l~l~SljSl~= l~l~S(l~l~)= l~l~R

1S(Rl~/j),

= R’l~l
2i’S(/jl~)R= R~’l~(l~Sl~)SljR= R’1~S/jR

lj ~ (l~Sl~) = l~l~S/~Slj= l~/~S(ljl~)= l~l~RS(R
1/~l~)

= Rl~l~S(l~l~)R’= ~ = Rl~Sl~R~.

(iii) We canalso deducefrom this the actionof Sl~using l~Sl~= id =

(Sl~)/~,etc. (theidentitymatrix timestheactionof the identity). In particular,

(Sl1
1) ~, = ~aklmRin (6)

whereR obeysRlablR~~jkb= = RlabIROjkb.Combiningthiswith (5) we
cancompute~‘°~ ~/Jo~ = /+

1~a~ ((SI~°
11)~, /Jo. to find the resultstated. 0

Thus £ is somekind of ‘quantum Lie algebra’ for H becauseit is a finite-
dimensionalsubspacethat generatesH andat the sametime is closedunder
the quantumadjoint action, which providesa kind of ‘quantum Lie bracket’
[t~, p~]= ~ i~.We haveintroducedthispoint of view in [10] andpointedout
thatthisbracketobeysanumberofLie-algebra-likeidentitiesinheritedfrom the
standardpropertiesof the quantumadjoint action, suchas

(LO) [ç~,i7] EL for ç~,~7Er,

(Ll) [~,[‘i,~1] = >[‘~u’~i]’ [~(2),~]1,
(LI’) [~, ij],~] = ~I:[~~(1)~[i~, [Sc~(2),~]1].
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The secondof theseis just the statementthatAd is acovariantactionof the
Hopf algebra on itself,while the third follows from the definitionof Ad. We see
heretwo problemswith this approach.Firstly, theseproperties(Li) and (Ll’)
cannotbe takenas abstractpropertiesof somekind of Lie algebrastructureon
£ becausetheyinvolve the coproductandthisdoesnot in generalacton £ in a
simpleway (its justgivessomesubspaceof HOH). Secondly,theyholdfor any
Hopfalgebraandso do not expressthefact thatquantumgroupssuchas Uq (g)
arecloseto beingcocommutative.TheusualLiebrackethaspropertiesinherited
from the fact thatU(g) is cocommutative,andour quantumLie algebra,to be
convincing,shoulddeformsomeof these.For later reference,

Proposition2.4.IfH isacocommutativeHopfalgebrathentheusualHopfalgebra
adjoint action [, I = Ad obeysin addition to the identitiesabove, the identities

(L2) ~~(2)®[~(1),’1] =

(L3) ~ ~[~~(l),?J(1)1®[~(2),11(2)1
forall ~,,~iin H.

Proof (L2) needsno commentexceptto say that we have written the co-
commutativity in this way becauselater we shall adoptsomethinglike this
without assumingthat the Hopf algebrais completelycocommutative.This
weaknotion of cocommutativity(as relativeto somethingon which theHopf
algebraacts) is useful in other contextsalso. For (L3) we haveA [~,i~] =

~
In the cocommutativecasethenumberingof the sufficesdoesnot matterso we
haveat oncethe right handsideof (L3). For the recordwe give herealsothe
proofof (Ll). This holdsfor anyHopfalgebraandreads

~[E~(t),~1,[~(2),~1]

= ~(~(l)(l)~S~(l)(2)) (l)(~(2)(l)~S~ (2)(2))S(~(l)(l)~S~ (1)(2)) (2)

=

~ S nc’s ~ic’2~ \Ic’ \Ic’S
= ‘~(1)~1(1)’~~‘-“~ (4)) ~ ‘~ (3)) ~~)J7(2)) ~ (2)

= ~ = [~,[~,~]]

expandingout the definitions, the propertiesof the antipodeandthe Sweedler
notation [24] to renumberthe sufficesto base10 (keepingtheorder).Thethird
andfourth equalitiesthensuccessivelycollapseusingthe axiomsof anantipode.
0

Anotheraspectof ourmatrix approach,which is not aproblembutaconven-
tion isthatourchosenfinite-dimensionalsubspace£ is amixtureof ‘group-like’
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elementswith coproductA~~ ~ andmoreusual Lie-algebra-likeelements
whereAc~-~ c~0 1 + 1~~ (with a suitabledeformation).The latter are how
off-diagonalelementsof l~tendto behave,while theformer arehow diagonal
elementstendto behave.Anothergood conventionis to take as ‘quantum Lie
algebra’ thesubspace

X = span(x’1) C H, x
1~= l’ö’ (7)

This is a matterof tasteandis entirelyequivalent.The subspaceis alsoclosed
under [, ] = Ad which now has structure constants

[x’,x~]= [/I,/J] + ô’ó~— — ö’l~= (c’~K— obo.~K)XK (8)

usingthe elementarypropertiesof the quantumadjointaction (notably1’ r~1 =

� (1’) = ö’). Here ö1 = ô’°, andö~K areKroneckerdelta-functions.Thelast
equality usesthat

= Ô’Ô~ (9)

which follows at once from the expression for c in the proposition. These x’
equallygenerateH alongwith 1 andhaveabetter-behavedsemi-classicallimit
in the standardcases.This aspectof our approachhasbeenstressedin [22]. It
is alsoquite naturalfrom thepoint of view of bicovariantdifferentialcalculusas
explainedin [23]. We notealsothat somecombinationsof the basiselements
of £ or X canhavetrivial quantumLie bracketandhaveto be decoupledif we
want to havethe minimumnumberof generators.

Finally, to completethe pictureof B(R) as asomekind of dualof A(R) we
havean elementarylemmawhich we will needlaterin Section6.

Lemma2.5. ThegeneratorsofA (R) definematrixelementsoftherepresentation
p ofB(R) given by

P2(111) = (11,12) = Q12, Q = R
21R12

Proof We haveto showthatthisextendsconsistentlyto all ofB (R) as an algebra

representation,

p3(R21u1R12u2) = R21p3(u1)R12p3(u2)

= R21Q13R12Q23= Q23R21Q13R12

= p3(u2)R21p3(ui)R12 = p3(u2R21u1R12).

Themiddleequalityfollows from repeateduseof theQYBE. Thusthe extension
is consistentwith the algebrarelationsof B (R). 0

OnecanalsoseeoverC that if R obeysa certainreality conditionthenB (R)
is a*-algebrawith uhj* = u’,. We call thisthehermitianrealform ofthe braided
matricesB(R). At thelevel of the standardUq (g) with realq the corresponding
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~ = 13, recoversthe standardcompactreal form of the theseHopf algebras.
Theseremarksconfirmthat thebraided-matrixapproachto Uq (g) is quitenat-
ural.

3. Propertiesof the braided-adjointaction

In thissectionwe recall somebasicfactsaboutHopfalgebrasin braidedcate-
gories(braidedHopf-algebras)andtheirbraidedadjoint action [8]. It is these
categoricalconstructionsthat leadto the notion of braided-Liealgebrasin the
nextsection.The idea is thatweknowwhat is abraidedgroup [9] (or in phys-
ical termsagroup-like object with braid statistics[16]) andwejust have to
infinitesimalizethisnotion.

One of the novel aspectsof braidedgroupsis that results fully analogous
to thosefamiliar in algebraor group theoryare provennow using braidand
knot diagrams.This is becausewe work in abraidedor quasitensorcategory.
This means (C, 0,1, c1, W) whereC is a category(a collection of objectsand
allowed morphismsor mapsbetweenthem), 0 is a tensorproduct between
two objects,with 1 a unit object for the tensorproduct. The isomorphisms
~v,~çz:Vo(W oZ) —~ (V® W) o Z expressassociativityandsaythat we can
forget aboutbrackets(all tensorproductscanbe put into a canonicalform in
aconsistentway). Finally, thereis a braided-transpositionor quasisymmetry
Wj,w: V oW —~ W ® V saying that the tensorproduct is commutativeup to
thisisomorphism.The differencebetweenthissettingandthestandardonefor
symmetricmonoidalcategories[7] isthatwedo not supposethatW~v°Wv,w =

id. Putanotherway, we distinguishcarefullybetweenWv,wand (Ww,v) 1 which
arebothmorphismsV0 W —* W 0 V for anytwo objects.To avoid confusion
a goodnotationhereis to write the morphismsnot in the usualway as single
arrows,but downwardas braid crossings,

V %J/ V 14’
-1

=

tIl: ji ~f 11:1
Ii’ V 14’ V

Thesebraided-transpositionsdo howeverobeyotherobviouspropertiesof usual
transpositionsuch as W~®w,z = Wv,z° Ww,z andsimilarly for Wvw® z. These
ensurethatdifferentsequencesof braidedtranspositionsthat connecttwo com-
positeobjectscoincideif thecorrespondingbraidsin the notationabovecoin-
cide. Also, theseisomorphismsarefunctorial in that they arecompatiblewith
anymorphismsbetweenobjects.If we write anymorphismsalsopointingdown-
wardsasnodeswith input linesandoutputlines,thenthe functorialitysaysthat
we canpull suchnodesthroughbraid crossingsmuchas beadson a string.

This describesthe diagrammaticnotation that we shall use. For a formal
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treatmentof braidedcategoriessee [6] and for an introductionto our methods
see [8, Sec. 3]. In this notation,the axioms of a Hopf algebra in a braided
categoryarerecalledin Fig. 1. They arelike a usualHopfalgebraB exceptthat
the product,coproductA, antipode5, unit ,~andcounit � areall morphismsin
thebraidedcategory.In thediagrammaticnotationwewrite theunit objectasthe
emptyset.Thefirstaxiom shown(thebialgebraaxiom) is the mostimportant:it
saysthat the braidedcoproductB —~ B®B is an algebrahomomorphismwhere
B®B is the braidedtensorproductalgebrastructureon B ® B. This is like a
super-tensorproductand involves transpositionby W. The two factors B in
B®B do not commutebut insteadenjoybraidstatisticsgiven by W.

Thereadercankeepin mind the trivially braidedgroup (the ordinarygroup
Hopfalgebra) B = CG with Ag = g®g andSg = g

1. The antipodeaxiom
saysthat if we splitg into g, g, apply S to onefactorandthenmultiply up, we
get somethingtrivial. The diagramson the right in Fig. 1 just saythisabstractly
as morphisms.

It is remarkablethat suchobjectsdefinedin this way really behavelike usual
groupsor quantumgroups.For example,the usual adjoint actionof a group
on itself consistsin taking g, a, splitting g to give g, g, a, applying S to give
g, g~, a, transposingg1 pastthe a, and thenmultiplying up. When written
as diagramsor morphismsin our braidedcategory,this is the braided adjoint
action. It is shownin thebox in Fig. 2.

Fig. 2 itself is the diagrammaticproof of the main result of this section.It
showsthatapplyingthe braidedadjoint actiontwice as on the right in Fig. 2, is
the sameas theleft handexpression.This consistsin applyingthetensorproduct
braidedadjoint actionof B on B ® B andthenapplyingthe adjointactionagain
to the result (all together three applications of the braided adjoint action on the
left in Fig. 2). Wecall this the braided-Jacobiidentity.Theproofreadsasfollows.
Starting on the left, use the bialgebra axiom that 4 is an algebra homomorphism
to expand the expression on the left. For the second equality we use the fact that
S is a braided anti-coalgebra map4 o 5 = (S®S) W o 4 [18]. We thenidentify
(the dottedline) a closedloop which will after reorganizationor the branches
usingassociativityandcoassociativitycancelaccordingto the antipodeaxioms
in Fig. 1. We makethis cancellationfor the third equality. We thenusethatS
is a braidedanti-algebramapfor the fourth equalityandidentify anotherloop.

BR RB BBBB B B B B B B B B

~ ~ ~
Fig. 1. Axioms of abraidedHopfalgebra.
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This cancelsin a similarway to theantipodeloopgiving the fifth equality.The
final equality is the easierfact alreadyprovenin [12] that the braidedadjoint
action is indeedan action. We summarisethis alongwith someother known
properties.

Proposition3.1.Let B be a Hopf algebra in a braidedor quasitensorcategory
and let Ad = •2 o (id 0 WB,B)(id oSo id)(4 ® id) denotethe braided adjoint
action asabove. It is (a) an action ofB on itselfand (b) respectsits ownproduct
(a braided modulealgebra)as in Fig. 3. Further (c) it obeysthe braidedJacobi
identity.Finally, if B is cocommutativewith respecttoAd in thesenseof[16] (as
shown)then(d) holds.

Proof We havespelledout theproofs of (a), (b) and(d) in [12] in adual form
with comodulesandcoactions(for thebraidedadjoint coaction).We askthe
readerto turn the diagrammaticproofs for thesein [12] up-sidedown (a 180
rotation) andreadthem again.Theyreadexactlyas the requiredprooffor the
Ad action. This is part of the self-dualityof the axiomsof aHopf algebra.For
the newpart (c) we havegiven the proofabove. 0

Notethat for a usualnon-cocommutativeHopfalgebrathe quantumadjoint
action doesnot respectthe coproductin the senseof (c) above. One needs
a cocommutativitycondition. The idea in [161 was not to try to definethis

BBB BBB BBB

BBB BBB BBB B

~A~’ A~/J
Fig. 2. Proofthat the braidedadjoint actionobeysthe braidedJacobiidentity.
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(a) (b)
BBB BBB B B BBB BBB B B

~ A~

B B B B B B (d}

~Al = ~ =

Fig. 3. Summaryof Propertiesof theBraidedAdjoint Action (a) an action (b) a module-algebra
undertheaction (C) thebraidedJacobiidentity (d) compatibility with the coproductimplied by

the assumptionof braided-cocommutativitywith respectto Ad.

intrinsically (the naivenotion doesnot work well) but in a weak form as co-
commutativewith respectto amodule. This is the form that we have used:
we supposethat B is cocommutativein this weaksense.This correspondsto
directly assuming (L2) in Proposition 2.4. This is then enough to derive (d)
which correspondsto (L3) in thatproposition.

To this extentthen,the kind of Hopf algebrasin braidedcategoriesthat we
consideraretruly like groupsor envelopingalgebrasin the sensethat they are
supposedbraided-cocommutativeat leastwith respectto their ownbraidedad-
joint action. This completesour reviewof the braidedadjoint actionandthe
derivationof the identities thatwe will needin the nextsection.We will take
them as the definingpropertiesof abraided-Liealgebra.

4. Braided-Lie algebrasand their envelopingalgebras

We haveseenthatif wedo havea braidedgroupasin thelastsectionthenthe
braided-AdjointactionobeyssomeLie-algebralike identities as in the second
line in Fig. 3. If thebraidedgrouphassomegeneratingsubobjectwhich is closed
underAd thentheseidentitieshold for it also. Motivatedby this, we are going
to adopt these as abstract axioms for a braided-Lie algebra and prove a theorem
in the conversedirection. Thus every suchbraided-Liealgebrawill have (at
leastin a categorywith direct sums)an envelopingbraided-bialgebrareturning
us to somethinglike thethe kind of braidedgroup we might havebegunwith.
Onesurprisewill bethat the envelopingalgebrahereseemsmorenaturallyto be
a bialgebra(in a braidedsense)ratherthana Hopf algebrawith antipode.Of
courseonecanaddfurtherconditionsto forceabraided-antipodebut theydo not
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~L1) (L2) (L3)

L £11 L ilL

~‘ =~( ~

Fig. 4. Axioms of aBraided-LieAlgebra (a)Braided-Jacobiidentity axiom(b) Cocommutativity
axiom (C) Coalgebracompatibility axiom.

appear to be very natural from the point of view of the underlying braided-Lie
algebra.

Definition 4.1.A braided-Lie algebra is (L, 4, c, [ , 1) where £ is an object in
a braided or quasitensor category, A: £ —* £0 £ and e: £ —~ 1 are morphisms
forming a coalgebra in the category, and [, ]: £0 £ —* £ is a morphism obeying
the conditions (L1),(L2),(L3) in Fig. 4.

The idea of introducing a coalgebra here is one of the novel aspects of the
approach. In the usual definition of a Lie algebra a coalgebra structureA~=

~o1 + 1 o~and ~ = 0 is implicit. Wedo not want to be tied to a specific
form such as this and hence bring the implicit 4 to the foreground as part of the
axiomatic structure. The only requirements of a coalgebra are

(AOid)oA = (id0A)oA, (e®id)oA = id = (ido�)oA, (10)

as usual.
There is no bialgebra axiom here because after all £ is not being required to

have an associative product. It is typically some finite-dimensionalvectorspace.
Instead axiom (Li) says that £ is being equippedwith somekind of Lie bracket

]. This braided-Jacobi identity is a form of associativity. If one imagines
momentarily the usual linear form for A then the left hand side of (Ll) has
two terms and we have something like the usual Jacobi identity as discussed in
Section 2. Weof course do not suppose this (we do not even suppose that £
has an element that can be called 1). Wedo however suppose that A is braided-
cocommutative with respect to this Lie bracket [ , ] in the sense of (L2) and
that A respectsit in the sense of (L3). This (L3) is a Lie form of the bialgebra
condition in Fig. 1.

Proposition 4.2.Let (£,A, �, [, 1) bea braided-Liealgebrain an Abelianbraided
tensorcategory(we supposethat we havedirectsumswith the usualproperties).
Then there is a braided bialgebra U(L) in the sense of Section 3, generatedby
1 and £ with relations asshown in Fig. 5. We call it the universalenveloping
algebra of the braided-Lie algebra.
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Fig. 5. Defining relationsof the braidedenvelopingalgebraL (il).

11 II Li

= I II = I = ~ =

(1 LI Li (Li (1± Lr

Fig. 6. Proofthat 4 extendsto U(C) as a braidedbialgebra.

Proof Formally U(~)is the free tensoralgebrageneratedby £ modulo these
relationswith coproductgivenby A extendedto productsas abraidedbialgebra.
We haveto showthat thisextensionis compatiblewith the relationsof U(L~).
This is shown in Fig. 6. The first equality is the definition of how A extendsto
products. The second assumes therelationsin U(L). Thethird is coassociativity
and functoriality. The fourth usesthe cocommutativityaxiom (L2) applied in
reverse. The fifth uses functoriality and coassociativity again to reorganise. The
sixth equality is (L3). The result thencoincideswith the extensionof A to
productswhen the relationsof U (.C) areusedfirst. The proofto higherorder
proceedssimilarly by induction. The proofthat � also extendsto a counit on
U(~C)is equally straightforward. E

The motivationhereis as follows. In anyHopf algebraonehasthe identity
= 1)(1)~(S~(1)(2))~(2)= ~j. For example for the usual

U(g) with linear coproductthis is [ç~,i~] + i~ = as expected.We havea
similar definitionbut without any specific form of coalgebra,andof coursein
the braidedsetting. We concludewith somegeneralpropertiesof thesebraided
envelopingalgebrasU(L ). Following the usualideasaboutLie algebrasrepre-
sentationswehave
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(a) (b)
L LV L LV L ~‘ LV

Fig. 7. Definition (a) of representationof a braided-Liealgebraand (b) cocommutativitywith
respectto it.

Definition 4.3.A representationof a braided-Lie algebra(4A,�, [ , 1) is an
object V and morphism a: £0 V -~ V such that the polarisedform of the
braided-Jacobiidentity (Ll) holds. This is shownin Fig. 7a. We saythat£ is
cocommutativewith respectto V if the polarised form of the cocommutativity
axiom (L2) holds.This is shownin part (b).

One cantensorproductrepresentationsof abraided-Liealgebra (usingthe
coproductA ) justasforbraidedHopfalgebras.Theclass0(L) of representations
with respectto which £ is cocommutativeis also closedundertensorproduct
andbraidedwithbraidinggivenby W. Thefactsarejustasfor the representation
theory of braidedHopf algebrasor bialgebras[181. The diagrammaticproofs
aresimilar. Alternatively,thesefactsfollow from the following propositionthat
connectsrepresentationsof £ to thoseof U(L) for which the bialgebratheory
alreadydevelopedapplies.

Proposition4.4.Every representation (a, V) ofa braided-Liealgebra£ extends
to a representationofU(L) on V. If L is cocommutativewith respectto V in the
senseof(L2) then U(L) is cocommutativewith respectto V in a similar sense
(as in [16]).

Proof This is shown in Fig. 8. Part (a) verifiesthat the relationsof U(L) are
representedcorrectly.We definethe actionof U (L) by the repeatedapplication
of the Lie algebra action as shown. The representation axiom in Definition 4.3
ensuresthat thiscoincideswith the actionof U(L) if its relationsareusedfirst.
Part (b) verifiesthattheresultingactionis cocommutativeif the representation
is cocommutative.We showit on elementsof U(L) with are products of £.
The proofproceedssimilarly by inductionto all orders.The first equalityuses
Proposition4.2thatU (L) is a bialgebra.Thesecondequalityis functoriality to
pull oneofthe productsinto the positionshown,andthata is a representation
for the otherproduct.Thethird equality is functorialityagainto pull oneof the
a’s up to the right. Wethen use the cocommutativity assumption for the fourth
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(h) I I 1 1 ( Li

= = = =

Fig. 8. Proofthat (a) a representationon V extendsfrom £ to UCC) and (b) cocommutativity
also extends.

equality, andthenagainfor the fifth. We thenusethata is an actionandthe
bialgebrapropertyof U(L) in reverse. E

An importantexampleis of courseprovidedby [ , ] itself. It was the model
for the definitionsandis clearlya representationand£ is cocommutativewith
respectto it. We call it the adjoint representationof £ on itself. By the last
propositionthen,it extendsto a representation(alsodenoted[ , ]) of U(L) on
£ with respectto which U(L) is cocommutative.

Lemma4.5. Theadjoint representation[ , 1 of U(L) on £ definedvia Propo-
sition 4.4 obeysan extendedform of the braided-Jacobiidentity (Li) and the
coalgebracompatibilityproperty(L3) in which the lefi-mostinput £ in Fig. 4 is
extendedto U (£).

Proof This is shownin Fig. 9. Part (a) verifiesthe extendedbraided-Jacobi
identity on elementsof U (L) which are productsof L. The first equality uses
that U(L) is abraidedbialgebrafrom Proposition4.2. Thesecondthat [, I is a
representationof U(L) as obtainedfrom Proposition4.4. We thensuccessively
usethe braidedJacobi identityaxiom (Ll) twice. The final equalityusesagain
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(a)

LLLL LLLL ilL LL

= I.~2 = ~1(] I

LLLL LLLL LLLL

= ~ = I =

(b)

LL L LL L LL L

= ~. I = [,I~ I
LL L LL L LL L

= = ~LL = I . I

Fig. 9. Proof that (a) property (Li) and (b) property (L3) extendto representation[ , I of
U(L) on £.

that [, ] is an action.Exactlythesameproofholdswhenthe elementin U (L) is
ahigherordercompositeelement,providedonly thatthe resulthasbeenproved
alreadyatlower ordersso thatwe can useit for the third andfourth equalities.
Hencethe result is provento all ordersby induction. Part (b) is proved in a
similar way. We verify (L3) extended to products in its first input. The first
equality is that [ , ] is a representation.The secondandthird successivelyuse
(L3). The fourth then uses that [ , ] is an actionandthe fifth that U(L) is a
bialgebra.The proofextendsto all ordersby induction. 0
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(a)
(‘Li I Li LII Li I (~ Li i (Li L Li (Li Li Li

= I ~I = I I = I =

ULL il L~Li Li =

= ~.I I I = ~ I = I (JLi Li Li =

(!L (
7Li

(b)

LILi Li Li LiLi Li Li (Li Li Li LLi Li Li

= ~ = ~ = I~II

LILi (ui (IL (IL (11 ULi Liii Liii

(Iii L Li L!Li Li Li (Li Li L

= ~.I = ~I,] =

LILi ULi Uti (IL UL (IL

Fig. 10. Proofthat [ , ] extendsto a cocommutativeactionof U(L) on itself.

Proposition4.6. Theadjoint representation[, ] ofU(L) on £ definedvia Propo-
sition 4.4 extendsto a representationon U(L) itselfas a braided moduleal-
gebra. We call it the adjoint action of U(L) on itself U(L) remainsbraided-
cocommutativewith respectto this action.

Proof The proofis indicatedin Fig. 10. We showin part (a) thatthe represen-
tation constructedin the previouspropositionextendsconsistentlyas abraided-
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modulealgebra.The first equality is the definition of the extensionin this way.
The second uses the relations in U(L), the third that U(L) actscocommuta-
tively on £ from part (b) ofthe last proposition.The fourthis axiom (L3). The
fifth equality is areorganizationusingcoassociativityandfunctoriality andthe
sixth is the cocommutativityagain.The seventhrequiresthe precedinglemma
that the extended[ , ] continuesto obeya braided-Jacobiidentity as in (Ll)
but with the first £ replacedby U (£). Assumingthisweseethattheresult is the
sameas first usingthe relationsin U(£) andthenextending[ , I as a braided
modulealgebra.This provesthe resultwhenactingon productsof two £. The
proofon higherproductsproceedsby induction.Notethat in doing thiswehave
to prove Lemma4.5 againwith the secondinput of (Ll) now also extended
to products.The proofof this is similar to the strategyhere (namelyconsider
composites)andneedsthe module algebrapropertyof [ , I as just provenin
Fig. 10. Thus the induction hereproceedshandin handwith this extensionof
Lemma4.5.

Part (b) containstheproofthat the resultingactionof U(L) remainscocom-
mutativeon products.The first equality is functorialitywhile the secondis the
module-algebrapropertyjust proven.Thethird andthenthefourth eachusethe
cocommutativityof the U(L) action from the precedingproposition.Coasso-
ciativity is expressedby combiningbranchesinto multiple nodes(keepingthe
order).The fifth equalityusescocommutativityonemoretime. Finally we use
themodulealgebrapropertyagainto obtaintheresult.Againtheproofon higher
productsproceedsin thesamewayby induction,thistimehandin handwith the
extensionof the property (L3) in Lemma4.5 to U(L) in its secondinput. This
is provenby the samestrategyandusesbraided-commutativityof the action of
U (L) on productsof alower order. 0

In the courseof thelast proof(andusingsimilar techniques)we seethat the
braidedJacobi identity and the coalgebracompatibility propertyalso extend
from £ to U(L). In short,all the propertiesofAd summarizedin Fig. 3 hold for
this extended[ , ]. We remarkthat if A on U(£) happensto haveanantipode
making U(L) into abraidedHopfalgebrathentheaction [ , ] indeedcoincides
with thebraided-adjointactionAd. Thisfollows easilyfrom the definitions.On
the otherhand,for ageneralcoproductsuchas the matrix examplein the next
section,thereisno reasonfor U(L) to beabraidedHopfalgebra.It is remarkable
that [, I neverthelessplaystherole oftheadjointactionevenin thiscase.Further
propertiesof thesebraidedenvelopingalgebrascanbe developedusingsimilar
techniquesto thoseabove.

Finally, we notethat thatLi = k o£ c U (L) is alsoacoalgebraandclosed
underthebracket[, ] extendedas in Proposition4.6. Ofcoursetheenveloping
algebrafor this unital coalgebra£~shouldbe definedwithout addinganother
copy of!. Otherwisetheconstructionis justthesameasabove.Moreover,it may
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x A It x

= / ~ + ~ + t~v =

(LI) xxx xxx xxx xxx

I .~ + ~. I ~ =

L2

x ~v x x X X x x

~A
1 ~:I1 ~i_J -~

(hi

xx - xx = +

ux U X LI x (IX

Fig. 11. For coalgebrasof the form (a) on X c 1 ~ £ the axioms (Li) and (L2) (andalso a
similar (L3)) of a braided-Liealgebrain termsof (X,4~,[ , I) look morefamiliar. The braided

envelopingalgebrain termsof X hasrelations(b).

be thatanotherchoiceof decompositionof this unital coalgebraL~is possible.
ForexampleLi = Ii? X whereX is a subobjectof theform

Ax=x®l+l®X+Aix, �~=0, A1:X—~X®X (11)

for x E X in concretecases,andlike £ is closedunder [ , ]. This is expressed
in ourcategoryby diagramsas in Fig. 11 part (a). In the otherdirection if A1 is
a morphismwhich is coassociative(we do not require it to havea counit) then
(11) definesa coalgebrastructurewith A 1 = 1 ® 1 and� 1 = 1 in the concrete
case.SomeLi of interestbelowwill be of thisform andin this caseU(L) can
be regardedas generatedjust as well by X as U (X). Fromthis point of view
a braided-Liealgebraof this typeis determinedby (X, A1, [ , ]) in a braided
categoryobeyingaxiomsobtainedby putting (11) into Fig. 4. We usethat [ , I
extendsto U(L) as abraided-modulealgebra.The resultingform of (Li) and
(L2) is shownin Fig. 11 and(L3) is obtainedin justthesameway. In eachcase
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nothingis gainedby working in this form (therearejust two extraterms) and
this is whywe havedevelopedthe theorywith (L,A, [ , I). On the otherhand
the extratermsbring out the sensein whichthesegeneratorspreciselygeneralise
the usualnotion of Lie algebra,with a‘braided-correction’A1. Apart from this
we seethat (Li) becomesthe obviousJacobi identity in afamiliar form. The
envelopingalgebraas generatednow by the (X, A1, [ , ]) is alsoof the obvious
W-commutatorform with this A1 correction.

Note that from (L2) in Fig. 11 we seethat A1 � 0 if we are to obey this
braided-cocommutativityaxiom, unlessit happensthat W

2 = id. Thus, our
notionof braided-Liealgebrain termsof (X, A

1, [ , ]) reducesto preciselythe
usualnotion of Lie-algebrawith threetermsin the Jacobiidentity etc., only if
thecategoryissymmetricandnot trulybraided.In thetruly braidedcasethereis
no advantageto consideringtheX andwemayaswell work with the ‘group-like’
generatorsL.

5. Matrix braided-Liealgebras

The constructionsin the lasttwo sectionshavebeenratherabstract(andcan
be phrasedevenmoreformally). In this sectionwewantto showhowtheylook
in a concretecasewherethe categoryis generatedby a matrix solution of the
QYBEandA hasa matrix form.

Firstly, let us recallthatour notionof braided-Liealgebrais subordinateto a
choiceof coalgebrastructureon L. Whateverform we fix determineshow the
axiomslook in concretetermsfor braided-Liealgebrasof thattype.It neednot
be the usualimplicit linear form. Thus supposethat £ is avector spacewith
basis{u’} sayandfix acoalgebrastructureA, e on it. Thesearedeterminedin
thebasisby tensors

Al 41 J K I ~I Al AA I A
= ~J JKu OU , cu = U , LI ALLI JK = A JAA KL,

Al rA ri Al ~1
1~1AJU 0JaJ,4u,

whereö’~is the Kroneckerdeltafunction. The underlineson A and � are to
remindisthat thesearenot anordinaryHopfalgebracoproductandcounit.Re-
peatedindicesareto besummedasusual.Theseareobviouslythecoassociativity
andcounity axiomsin tensorform.

With this chosencoalgebrain the background,the contentof Definition 4.1
in this basisis as follows.

Proposition5.1.Let L be a vectorspacewitha basis{u’} andcoalgebraA’JK, 5k’.
Then a braided-Lie algebra on £ is determinedby tensorsR = RIJKL andc’~K
such that R is an invertiblesolutionofthe QYBEand thefollowing threesetsof
identitieshold:
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(LOa) ôARJA~’B = Ô
1BÔ~and~5~R”A’B=

(LOb) AIMNRKANBRALMJ= RKLIAAAJB

andAKMNRMAIBRN LBJ = RKB~’JABAL,
(LOc) RKMJBRMLIA cABN = c”A RKLA N

andR’AKMR.IBMLc~N = CIJARANKL,

(Li) AKPQR’A~Bc~’AMcBJNcMNL = c’~ACKAL,

(L2) AIpQR~’AQBc~MRBLMK=

(L3) CIJAAAKL = ~ andc11KÔK =

In this casethecorrespondingbraided-Liealgebrastructureis

W(ul®uK) = RK~jjuL®u~, [u’,u~] =

Theenvelopingbialgebraof£ is generatedby the relations
I K Al DK M AB J L

uu LJAM1~ B Lc JUU.

Proof We are simply writing the axiomsof a braided-Liealgebraas in Defi-
nition 4.1 in our basis.To do this is is convenientto write all operationsas
tensors,as we havedonealreadyfor A. To readoff the tensorequationssimply
assignlabelsto all arcsof the diagram,assigntensorsas shownin Fig. 12 and
sumover repeatedindices.Thesecanbe calledbraided-Feynmandiagramsor
braided-Penrosediagramsaccordingto popularterminology.It is nothingother
thanour diagrammaticnotationin a basis.The group (LO) arethe morphism
propertiesarisingfrom the fact that A, �, [ , ] aremorphismsin the category
andthe braidingis functorialwith respectto them,andhavebeenusedfreely
in precedingsections.In the conversedirection,given suchmatrices,onehasto
checkthat theydefinea braided-Liealgebra.The categoryin which this lives is
the braidedcategoryof left A-comoduleswhere(in the presentconventions)A
is a quotientof the dual-quasitriangularbialgebraA (R). It is in a certainsense
the categorygeneratedby R and the braidingis R on the vectorspace£ and
extendedas abraiding to products.The morphismpropertiesensurethat the
relevantmapsaremorphisms(intertwinersfor thecoaction).The otherproper-
ties neededare (Ll )—(L3) whichclearlyhold in ourbasisif thetensorequations
hold.Likewisewereadoff the relationsfor theenvelopingbialgebrafrom Fig. 5.
0

To give someconcreteexampleswe now takeA and� to be of matrix form.
Thus we work with vector spaces of dimension n2 and let {ubo~} denoteour
basis.Here I = (i

0, i1) is regardedas a multiindex. We fix

Aubo,, = u
1°a0 ~ �u’o~= ~ i.e., A’JK = 1~5’°jo(5~’~ôk ~ =

(13)
Braided-Liealgebrasdefinedwith respectto thisimplicit coalgebracannaturally
becalled matrix braided-Liealgebras.
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1 j I / 1 J

= R~K’L J = ~i =

)LO) / K / K

“ K / K / ‘K 1.1K K ~ K

/~= = ~ A~/ =

(LI) K / j K 1 .1 (L2) / j / j

(L3)

KL~?

Fig. 12. Tensorversionof braided-Liealgebraaxiomsis obtainedby assigningindicesto arcsand
tensorsasshown.

Proposition5.2.Let R ~ M~0M~beabi-invertiblesolutionoftheQYBE(soboth
R~andR = ((Rt2)~)t2 exist). Then

oK I oio d n—ia 1~ of
1 b ~c k0

~‘ L J = 1~ a ~ Jo b

1’ c k~” i

1 d’

1J ~a Jo n—lb i0 0k1 c om n
C K = .L~~1 b”~ k0 c

1~ n m~ a J
1

obeytheconditionsin theprecedingpropositionandhencedefinea matrixbraided-
Lie algebra (L, W, [, ]). Its braided enveloping bialgebrais the braided-matrices
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bialgebra introducedin [17],

U(L) = B(R)

with matrixcoalgebraAu = u 0 u, �u = id.

Proof In fact, mostof thework for thiswasdone in [171wherewe provedthat
B (R) was a braidedbialgebra.Apart for an abstractproof (by transmutation
from A (R)) wealsogaveadirectproofin whichweverified directly therelevant
identities.This includesmost of the above,andthe restaresimilar. The matrix
R with componentsRKj]j was denotedWKL~’Jin [17] to avoid confusionwith
the initial RIJJC

1, while the matrix Q in [17] is basicallyourc”K. The relations
of the envelopingalgebraare

uluK = c °‘ BRK(a,zt) uJuL = R_ flORitbalRltbkRcIktJd uJuL

by multiplying out andcancelingsomeinverses.This is the matrix W’ in [171
anddefinesthe relationsof B (R). It alsoobeysthe QYBE. Onecanmovetwo
of the R’s to the left handsidefor the morecompactform in Section2. 0

Thus the quantum-Liealgebrasin Section 2 aresuccessfullyaxiomatizedbut
only asbraided-Liealgebras.This is thereforethe structurethatgeneratesquan-
tum envelopingalgebrassuch as Uq (g). For such standardR-matriceswhich
aredeformationsof the identitymatrix, amoreappropriatechoiceof generators
of U(L) is x’ = u

1 — ö1. It is standardin the theoryof non-commutativedif-
ferentialcalculusto takefor the ‘infinitesimals’ elementssuchthat � = 0, and
this is what the shift to thesegeneratorsachieves.This works fairly generallyas
follows.

Proposition5.3.Let£ bea braided-Liealgebrain tensorformasin Proposition5.1
and UL) its braided envelopingalgebra with bracketextendedto U(L) as in
Proposition4.6. ThenthesubspaceX = span{xl} C U(L) wherex’ = u1 — ô
is closedunderthe braidingandbracketwith structureconstants

W(xboxK)=RKLA~JxLoxJ, [x’,x~] = (cK_~~ô~K)XK

andhas coalgebra

+ 1oxI+AIj~JoxK, ~‘=o.

Proof For the braidingwe usethe morphismproperties(LOa) for the counit,
to computeW(x’ oxK) noting that in its extensionto U (£) as a braiding,the
braidingof i withanythingis trivial (theusualpermutation).For thecoproduct
A we usethe counity property in (12) andthat~l = 10 1 in U(L). For the
bracketwe note that the extensionin Proposition4.6 is as a braided-module
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algebra.In particular, [ , 1] = � and [1, 1 = id so that we cancomputeit on
thex’. 0

This subspaceX equallywell generatesU (L) alongwith 1, but in generalit
is not any moreconvenientto work than£ becausethe coproductjust hastwo
extratermsandthesameterminvolvingA 1JK.Forexamplein ourmatrixsetting
(13) wehave

= x 01 + lox + x ox,
wherethe x’ = x ‘~ are regardedas a matrix. This is no betterto work with
thanourmatrix form on u. It is however,usefulin the following case.

Corollary5.4.Let (£, W, [, ]) bethebraided-Liealgebra in Proposition5.2cor-
respondingto a matrix solutionR e M~oM~ofthe QYBE, takenin theform
generatedby X in Proposition5.3 with its inheritedbracketand braiding. IfR
is triangular in thesenseR

21R12= 1 then W is a symmetryandthe braided-Lie
bracketvanishes,

= id, [x’,x~]= 0.

Moreover, theenvelopingalgebra U(L) in thiscaseis W-commutativein thesense
.o

tIJ

Supposenow that R is not triangular but a deformationR = R
0 + 0(h) ofa

triangular solutionR0.If f’JK is thesemiclassicalpart ofthebracketaccording
to

[x’x~I = hfUKxl~+0(h
2)

sayon thesegeneratorsandif werescaleto = h~~’then
[~I~J] = fIJ y~~K+ 0(h), 4~’= ~ 1 + 1 oy’+ 0(h)

andf’~K obeysthe usualaxiomsofa W-Lie algebra whereW = W (R
0) is the

symmetry(this includesusual, superandcolourLie-algebrasetc).

Proof Forthefirst partwehavealreadypointedoutin [171thatin theconstruc-
tion ofB (R) thebraidingissymmetricif R istriangularandC~Kis trivial in the
sensecUIK = ö’ô~’K.In anycasethesefactsfollow easilyfrom theexplicit forms
of W, c givenin Proposition5.2. Note thatin [17] thiswas interpretedas B(R)
beinglike the W-commutativebialgebraof functionson a ‘space’ (like a super-
space),while in the presentcaseweput theseobservationsinto Proposition5.3
with the interpretationof B (R) as the envelopingalgebraof a W-Lie algebra.
Forthesecondpartit is clearfrom the descriptionofthebraided-Jacobiidentity
andotheraxiomsin Section4 for the form of the coproductin Proposition5.3
thatthe semiclassicaltermf~’~Kobeys precisely the obvious notion of an R0-Lie
algebra(whereR0 is triangular,as studiedfor examplein [4,21]). If R0 = id
wehavetheusualbraidingW to lowestorderandhenceanordinaryLie algebra.
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Another triangularsolutionis (R5)’1
1’~

1= ôlfôkl (l )P(2)P(k) wherep (i) = 0, 1
and its deformationsin the aboveframeworkhavesuper-Liealgebrasas their
semiclassicalstructure. 0

Our formalism is not at all limited to deformationsof triangularsolutions
of the QYBE, so the matrix braided-Liealgebrasin Proposition5.2 may not
resembleusualLie algebrasor super-Liealgebrasor their usualgeneralizations.
But in the casewhenR is a deformationof a triangularsolutionthenthey will
bedeformationsof suchusualideasfor generalisingLie algebraswhenonelooks
at the generatorsX.

We concludewith two of thesimplestmatrix examples,namelyfor the initial
R’1

1’
1 givenby

1q0 0 0\ 7q0 0 0
(0 1 q—q~ 01 (o 1 q—q

1 0
Rgi

210 0 i 0J’ R~=(0 o i 0
\o 0 0 qI \o 0 0 —q~

Here the rows label (i, k) and the columns (j, I). We denotethe matrixgenera-
tors as

ía bu= I
\c d

andcomputefrom Proposition5.2. We assumeq
2 ~ 1,0. The corresponding

braidings!P andbraidedenvelopingalgebrasB (R) havealreadybeencomputed
in [17] to which we refer for detailsof these.

Example5.5.cf[i 0]. Let R = R~
2bethe standardGLq (2) R-matrixassociatedto

theJonesknotpolynomial.A convenientbasisfor the correspondingbraided-Lie
algebra£ is y = q

2a + d, ~ = d — a, b, c andthenon-zerobraided-Lie-brackets
are

[~] = q~(q2+ l)(q2— l)2~, [y,y] = (q~2+ l)y,

[b,c] = (q2— l)q2~= —[c,b], [~,b] = (q2 + l)(q2— l)b =

[~,c] = —(q2 + l)(q2— l)q2c =

[y,~] = (q6 + l)q4~, [y,b] = (qt + l)q4b,

[y,c] = (q6 + l)q4c.

A convenientbasisofX isc~,b, c andy— � (y) which werescalebya uniformfactor

(q2 — 1Y’to a basis~, b,~, y. Thenthe braided-Liealgebra takestheform

[~,b] = (q2 + l)b = ~q2[b,çe], [çe,~] = —(q2+ l)q2i~=

[b,?] = q2~=—[~,b], ~ =

[~7,~] = (l—q4)~, [~i,b] = (l—q4)b, [7,~] = (l—q4)~.
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with zerofor the remainingsix brackets.As q —~ 1 the braiding W becomesthe
usual transpositionand the spaceX with its bracketbecomesthe Lie algebra
512 ~ u(1). The bosonic generator y ofthe U (1) decouplescompletelyin this
limit.

Proof This is from the definitionin Proposition5.2. It is similar to the compu-
tation of theactionof Uq (sl2) on the degenerateSklyanin algebrain [101. We
computedB (R) in [13,17] andalreadynotedthe importanceof the element
d — a = ~, andthattheelementq

2a + d = y wasbosonicandcentralin B(R).
It is remarkablethat its braided-Liebracketis not entirely zero eventhough
the actionof Uq (Si

2) Ofl it is trivial. The shift to the barredvariablesfollows
the generaltheoryexplainedabovesinceR hereis adeformationof a triangu-
lar solution (namelythe identity). To computethebrackets[~7, 1 we notethat
~(y) = (q

2 + 1) andthat the bracketobeys[1, 1 = idand [ ,l] = �. Hence

[y—�(y),b] = [y,b] — (q~2+ l)[l,b]

=

[y—e(y),y—e(y)] = [y,y] — (q2 + l)[l,y] = 0,

etc. Theothercomputationsaresimilar. ThebraidingW andthestructureof the
envelopingalgebraarein [171. 0

NotethatbraidedenvelopingbialgebraU(£) in termsof theseresealedgener-
atorsmust in the limit q —~ 1 tendto U (gl

2). It can becalledB Uq (gl2) because
it is abraidedobject.We haveidentified it in [10] as the degenerateSklyanin
algebra.On theotherhandthissameB(R) in termsof theoriginal generatorsu
tendsto the commutativealgebrageneratedby the co-ordinatefunctionson the
spaceof matricesM2, whichwasour original pointof view in [13,171.Thusfor
genericq we canthink of the braidedbialgebraU(L) = B (R) from eitherof
thesepointsof view. The sameappliesin the nextexamplewherewetook the
view in [171thatB (R) tendsas q —* 1 to the super-bialgebraof super-matrices
M111. This time, after rescalingit becomesin the limit the super-enveloping
algebraU(g1111).

Example5.6.Let R = Rgijj be the non-standardR-matrix associatedto the
Alexander-Conwayknotpolynomial.A convenientbasisfor the corresponding
braided-Liealgebra£ is a, ~ = d — a, b,c andthe non-zerobraided-Liebrackets
are

[b,c] = —(q
2—l)~= q2[c,b], [b,a] = (q2—l)q2b, [c,a] =

[~,a] = —(q2— l)2q2çe, [a,~] =

[a,a] = a, [a,b] = q2b, [a,c] = q2c.
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A convenientbasisfor X is a— l,b, c, ~ which we rescaleby a uniform factor

(q2— 1)—i to obtain a basisa, b, ~, ~. Thenthebraided-Liealgebra takestheform

[b,~] = —t~=q2[Z~,b], [~,a~]= (q2—l)t~,

[a,b] = —q2b = —[b,a], [a,?]= =

with zerofor theremainingninebrackets.Asq —~ 1 thebraiding Wissuchthat X
becomesa super-vectorspacewith a,~ evendegree(bosonic)andb,?odddegree
(fermionic), andits bracketbecomesthatfor the super-Liealgebra g1

111.

Proof This is by direct computationfrom Proposition5.2. The envelopingal-
gebraB (R) was studiedin [17] wherewe identified the element~ = d — a as
bosonicandcentral.The passageto the barredvariablesfollows the samesteps
as the previousexample.The braiding ~‘ and the structureof the enveloping
algebraarein [17]. n

Thisexampletendsas q —~ 1 to a super-Liealgebra,asit mustfrom thegeneral
theorydescribedabove.This is becauseR tendsto the matrixRs which is the
critical limit point for super-Liealgebras.The correspondingbraiding~Pfor this
is theusualsuper-transpositions.It is a triangularsolutionof the QYBE andall
its deformationsleadby the aboveto super-Liealgebras.

In thisway weseethatourgeneralR-matrixconstructionfor braidedalgebras
unifies the notionsof Lie algebrasandsuper-Liealgebras,colour-Lie algebras
etc., into a single framework. Theseusual notions are the semiclassicalpart
of the structureas we approacha certainsubset(the triangularsolutions) in
the moduli spaceof all solutionsof the quantumYang-Baxterequations.On
the other handwe are not at all tied in principle to suchusual deformations.
Forexampleif we considerour braided-Liealgebrasat otherpointsR in the
moduli spaceit isnaturalto callthecorrespondingsemi-classicalstructuresR-Lie
algebras.They control the deformationsof B (R) (theenvelopingalgebraat R).
Onepossibleapplicationmaybethat by solving somekind of R-classicalYang-
BaxterequationforgeneralR (basedon an R-Lie algebra)oneshouldbeableto
exponentiateto pathsin the moduli space.Moreover,theusualquantumgroups
arepreciselyquotientsof such envelopingalgebrassowe havethe possibility
of connectingthem by pathsin the moduli space.This is a problemfor further
work.

6. Braided-vectorfields

In this sectionwe showthat the braidedenvelopingalgebrasU (L) act quite
naturallyasbraided-vectorfieldson braided-functionalgebras.We havealready
seenoneexamplenamelythebracket[, ] consistingof onecopyof U (£) acting
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onanother.In theconstructionofProposition5.2thebraidedenvelopingalgebra
canalsobe thoughtof as the braided-matrixfunctionalgebraandwe do so for
the copy of U (L) which is actedupon. The vector-fieldsin this caseare (in
a braided-groupquotient)thoseinducedby the adjoint action. In this section
wegive by contrastvectorfields correspondingto the right actionon functions
inducedby left-multiplication in the group (theright regularrepresentation).

In thecaseof usual matrix groupsrecall that thesevectorfields are literally
givenby matrix multiplicationof theLie algebraelementsrealisedas matrices
on the groupelements.Thus, if u’J arethe matrixco-ordinatefunctionson the
matrix group in the defining representationp, g agroupelementand~ a Lie
algebraelement,wehave

(u’1 ~1t~)(g) = u’J(1~g)= p(~):~ukJ(g)

Our constructionsin this sectiongive in the matrix caseof Proposition5.2
preciselya q-deformationof this situation.We realiseour matrix braided-Lie
algebrasconcretelyas matricesacting by adeformationof matrix multiplica-
tion. This is in markedcontrastto usualquantumgroups,but mirrors well the
situationfor supergroupsandsuper-matricesandtheir super-Liealgebras.

Ourstrategyto obtainthisresultisto go backto theabstractsituationwherewe
haveabraidedHopfalgebraB in abraidedcategory,formulatetheconstruction
thereandafterwardscomputeits matrix form. Becausethe relevantbraided
matricesandbraidedgroupsthat concernusarerelated(in the nicecases)to
quantumgroupsby aprocessof transmutation,we obtainon the way vector-
fieldson quantumgroupsalso.

The generalconstructionof the regularrepresentationproceedsin ourcate-
gorical setting in Section3 alongthe samelinesas the braided-adjointaction.
Namely, onewrites the usualgroupor Hopf algebraconstructionin diagram-
maticform. Notethatthe coproductof B encodesthe groupmultiplicationlaw
if B is like the algebraof functionson a group.Theevaluationof thisagainstan
elementof the dualB* is thenlike the actionof the envelopingor groupalgebra
in the regularrepresentation.Thisgivesthe following construction.

Proposition6.1.Let B be a Hopf algebra in a braidedcategoryas in Section3
andsupposethat it has a dualB*. ThenB* actson Bfrom the right asdepicted
in theboxin Fig. 13. Moreover, the action respectstheproducton B in thesense
that B-becomesa B*~modulealgebra. Wecall this theright-coregularaction.

Proof HereB* assumesthatourcategoryis equippedwith dualobjects(in this
caseleft duals) and the cupand cap denoteevaluationcv: B* ® B —* I and
coevaluationcoev:I —~ B ® B* respectively.They obeya naturalcompatibility

(evstid)(id®coev)= id, (id®ev)(coev®id) = id, (14)
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BB’~B~

B~

(hi

B8B~ BBB~ B13B~ BBB~ BBB

Fig. 13. Thebraidedright actionof BX on B is shown in the box. It is (a) a right actionand (b)
a right braidedmodule algebra.

which in diagrammaticform saysthat certainhorizontaldouble-bendscan be
pulled straight.Theunusualingredientin theright actionis thebraidedantipode
Swhich convertsaleftactionto aright actionandisneededin thestrictly braided
casefor the modulealgebrapropertyto work out without getting tangled.The
proof that this is an action is in part (a). The first equality is the definition
of the productin B* in termsof the coproductin B. In terms of mapsthis is
equivalentto the characterization

evo (idOev®id)o (idOzlB) = eva (B’ ®id). (15)

The secondequalityis the double-bendcancellationpropertyof left duals.We
thenusethat thefact thatthe braided-antipodeis a braidedanti-coalgebramap
and functoriality to recognizethe result. That this makes B a braidedright
modulealgebrais shownin part (b). The first equality is the bialgebraaxiom,
the secondis thefactthatthebraided-antipodeis abraided-antialgebramap,the
third functoriality andthe fourththe definition of the coproductin B* in terms
of the productin B. This is determinedin asimilarway to (15) via pairing by
ev. An introductionto the methodsis in [8]. 0

Now let H be an ordinary quasitriangularHopf algebradually pairedas in
Section2 with suitabledualA. Thereare associatedbraidedgroupsB (H, H)
andB(A, A) correspondingto theseby transmutation[16,131.Theycanbothbe
viewedin thebraidedcategoryof H-modulesandas suchB (H, H) = B(A,A)*

at least in the finite dimensionalcase.We canthereforeapply the above dia-
grammaticconstructionandcomputethe actionof B(H,H) on B(A,A). The
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resultingformulaecanalsobe usedwith careevenin the infinite dimensional
case.

Proposition6.2.Thecanonicalright-actionofB(H, H) on B (A,A) (the braided
group offunctionalgebra type)comesout as

a~ib= ~ I~b,a(i))a(2)(R~,a(3)),a e B(A,A), be B(H,H).

This makes B(A, A) into a right braidedB (H, H) -modulealgebra in thecategory
ofleft H-modules.

Proof We computefrom theformulaeforB (H, H) in [161usingstandardHopf
algebratechniques.Its productis thesameasthatof H andit livesin the stated
categoryby the quantumadjoint action~. We needthe explicit formulae

4b = ~b(l)(ST
2~)o7~~b(

2), Sb = u(SR(
2))(Sb)R.W

for the braided-coproductand braided-antipode,whereu = (SR(2))RIW
implementsthe squareof the usual antipode.Finally, B(A,A) hasthe same
coproductas A, transformsunderthe quantumcoadjointactionand is dually
pairedby themapB(H, H) —* B(A, A)* givenby b ~ (Sb, ). Armedwith these
explicit formulaewe computethe box in Fig. 13 as

a.ib = ~(5(1z~2~c~.Sb),R.W(i)t~a(l))R.~~(2) t’a(
2)

= ~((SR~~(i) ) (S(R~
2~>Sb) )R.~’~(

2),a~))

x

= ~( (5J~U))5(7~(2)7~/(2)~Sb),au ))a(2) (R.
1~1~a(

3))

= ~( (5.7~(i))5(7~(2)~ 5(7~f(2) ~b) ),a(l ))a(2)(.7~/(i)a(3))

= ~(~~F(2) ~b,a(i))a(2)(7~’~Tha(3)).

Here the first equality follows from the form of 4 andof the braiding W in
the categoryof H-modules (it is given by the actionof 1~followed by usual
permutation).The secondequalityputsthecoadjointactionasan adjointaction
on the othersideof the pairing in onecase,andcomputesit in the othercase.
Thethird equalitywritesthe coproductin A as aproductin H andcancelsusing
the antipodeaxioms.We alsousedtheaxiomsof aquasitriangularstructure(1).
The fourth usesthatS is amorphismin the category(an intertwiner).Finally
weusefor the last equalitythe definitionof S in the reverseform

> (~~(2)~Sb)R~ = u~(Sb)u= S~b, Vb E

easilyobtainedfrom the formulaabove.We applythis to the elementR~
2~~ b.
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Fromthegeneralcategoricalconstructionabove,weknowthatthisright action
hasall the propertiesof a braided-modulealgebra.Onecan (in principle) verify
someofthesedirectly. Forexample,that i asstatedis amorphismin thecategory
means

~ VhEH, (16)

which canbe verified directly using the standardpropertiesof quasitriangular
Hopfalgebrasas canthat < is indeedan action. Themodulealgebrapropertyis
moredifficult to seedirectly. 0

In theinfinite-dimensionalcasewetakeherethecategoryof A-comodulesand
write 1~as a dual-quasitriangularstructureA 0 A —~ C. For H wecanthentake
for exampleUq (g) in FRT form. Thebraided-versionB (H, H) hasisomorphic
algebraandcoincidesin this factorizablecaseto a quotient of U (L) for the
correspondingbraided-Liealgebra£. For A we cantakethe quantumfunction
algebra0q(G) andas seenin [13,17] itscorrespondingbraidedversionB (A,A)
isa quotientof B(R). In thiscasewe cancomputetheactionin Proposition6.2
as

Ut

1 lki = ((57~(2)) ~ jki, t1a)u0b(S1~),

ic’i—b ik i ~ a ,c k im b n I ~ a
= \‘.)i J ~‘ 1 1,1 a/U b = \ j mt n c /, I a/u b
— a mk ni b p
—ub jn pa ml

usingthe notationsin Section2. We used(6) andthe definition of 1 in terms
of the quasitriangularstructureR.. Moreover,we knowthat the constructionis
covariantunderabackgroundcopy of Uq (g) in the senseof (16) with actionas
in (5) on u. Clearly,the sameconstructionsapplyfor anyRwhich is sufficiently
nice that we have a factorizabiequantumgroup in the picture. On the other
hand,wearenow readyto verify directly that thiswholeconstructionlifts to the
bialgebralevel. It is quite naturalat the level of braided-Liealgebras.

Proposition6.3.Let R be a bi-invertible solution of the QYBEas in Proposi-
tion 5.2and£ thebraided-Liealgebra introducedthere.Let B (R) be thebraided-
matrixbialgebra. Then £ actsfrom the right on the algebraofB(R) bybraided-
automorphisms(B(R) is a right-braidedmodulealgebrafor theaction of(L, A )).

We write <u
1O~

1= = ~i’ for thecorrespondingoperators. Then

U
1~i~aJO. = U’~k

1RCiI bQL’at0koR~c~~jl

and the extensionis accordingto the braided-Leibnizrule

(ab)~b0i1 = a~qJ(bØO~)~1, Va,b e B(R).
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Proof We no longer needaquantumgroup, but if thereis one it remainsa
backgroundcovarianceof the systemas above.For our directverification it is
convenientto write the actioncompactlyas

u1R12~= Q21u1R12= Pi (u2)u1R12, (17)

wherep is thefundamentalrepresentationof U(L) definedin Lemma2.5. From

thisit isclearthattheoperators aretrulyarepresentationof U (£) asrequired,
andhencealsoof £ in the senseof Definition 4.3. Next we needto checkthat
the extensionof this actionto productsas a right-braidedmodulealgebra,

(u1R~’u2R23)~3= (u1~3)(R~3lu2R23~3) (18)

etc, respectsthe relationsof B (R). In proving this it is convenientto insert
someR-matricesandprovecompatibility with the relationsin an equivalent
form. Thus,

(R2iR~uiRi3Ri2R~31u2R23)~= (R~3iR~.]R2iuiR12u2Ri3R23)~

= (R~R~u2R21u1R12R13R23)~= (R~u2R23R2iR~,]uiRi3)~Ri2

= (R~,]u2R23R2i~)(R~3luiRi3~)Ri2 = R32R31u2R21u1R23R13R12.

Herethefirst equalityisa fewapplicationsof theQYBE, thesecondtherelations
inB (R) andthethird theQYBEagain(thiscombinationisthe relationsof B (R)
transformedunder 1+ ~ as in Section2). The fourth equality is our supposed
extensionaccordingto (18).We computethe derivativesfrom (17) andusethe
QYBEfor the fifth. Onthe otherhandif webeginfrom the samestartingpoint
anduse(17) wehave

(R2iR~]uiRi3Ri2~)(R~u2R23~)= R32R31R21u1R12u2R13R23,

which gives the sameresult as aboveusing the relationsin B (R). From this
it follows that theserelationsarecompatiblewith the actionof £. The direct
computationwith tensor indices (rather than the compactnotation) is also
possible. 0

This is the natural right actionof B (R) regardedas a braidedenveloping
algebraU(£) on itself regardedas a braidedfunctionalgebra.Justas in Corol-
lary 5.4, it istrivial if R is triangular.It is naturalin thiscaseto definetheaction

of the infinitesimal generatorsx’. This is ix’ = — = D’ say, andfrom

(17) it is clearthat it vanishesif R is triangular.

Corollary 6.4.If Ris a solutionoftheQYBEsuchthat R = R0 + 0(h) where R0

is a triangularsolution, thenD’ = 0(h) andtheactionoftherescaledgenerators
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= h~D’ = Ti’ is a usual ~1-’-derivation.Here ~‘ is fromProposition5.2 with
R = R0 and is a symmetry.

Proof As in Fig. 11, we computethe form of the right-modulealgebraproperty
in Fig. 13 for the form of A on the~. Explicitly,

4- 4-

(ab)D’ = a(bD’) + aW(b®Ti’) + haW(b®Ti(io~k))Ti(k~it) (19)
The last A1 term entersat order h as doesthe deformationof the braiding.

Henceto lowestorderthe h~D’obeytheusualaxiomsof a right-vectorfield in
asymmetricmonoidalcategory. 0

Recall that it is theseresealedgeneratorsthat behavelike usualLie algebras
or super-Liealgebrasetc to lowest orderas we approachthe critical varietyof
triangularsolutionsof the QYBE. We seethat in this caseit is exactlythesethat
acton the braidedmatricesB(R) in this corollary. HereB(R) itself becomes
in the triangularlimit the ~P-commutativealgebraof functionson somekind of
matrix space.Moreover,theseconstructionswork at thebraided-grouplevel so
the underlyingspaceherecanbe regardedas somekind of group-manifoldin
the senseof asupergroupor ordinarygroupetc.

Example 6.5.For R~2as in Example5.5 thematrix-braidedvectorfieldsare

0 0 (q—q~)
2\ /0 0 1 —q2 0

~ ( 0 q2 0 0 1 ~ ( 0 0 0 q2 — 1
1=( 0 0 1 0 2(O 0 0 0

\o 00 1 / \oo 0 0

/ 0 —(l—q2)2 0 0

02 ( ~ 0 0 0
‘(q2_i 0 0 (q—q~)2

\ 0 l—q2 0 0

1q
2 +q2— 1 0 0 —(1 —q-2)2

4-2 1 0 q2+q2—l 0 0
0 0 q2 0
0 0 0 q2

From this we obtain the actionofthe rescaledgenerators~ as

ía b\ — í—q2a —q2b \ ía b\ — í 0 0I ~ ~ 4 ), ~ )~b= ~ 2
\c d c d + (q — l)a c d q a b

~a b’~ - (C q2d—(1—q2)q2a\ ~a b\ -— ~a b
~c d)<~ ~0 (l—q2)c )‘ ~c d)~~ ~c d

Asq —~ 1 thisbecomestheusualright actionofthelie algebrag1
2 on theco-ordinate

functionsofM2.
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Proof This is by direct computation from Proposition 6.3. The acton therow
vector (a,b,c,d) by the matricesshown.Fromthis by subtractingthe identity

matrix from ~ ~ and~22 we obtainthe actionof thex ~jvariables.This then
givestheactionof the resealedbasisc~,b,?, ~, wheretherescalingis by (q2— 1)~
asbefore.Thesealsoactby 4 x 4 matriceson thegeneratorsof B (R), which we
write now in a moreexplicit form asshown.Fromthisexplicit form weseethat
as q —~ 1 the actionsbecome

ía b\ — í—l 0\ ía b\ ía b\ — íO 0\ ía b\
~c d)~ = ~ 0 1) ~c d)’ ~c d)~ = ~i o) ~c d)’
ía b\ — iO l\ía b\
~c d)~ = ~o 0)~c d)’

which is the usualactionof the sl
2 generatorsby left-invariantvectorfields on

the functionsalgebraof SL2 or M2 as here.
Note thatatthe level of U (L) andits action on B (R), the choiceof normal-

izationof this initial R is not important. It doesnot changethe algebrasand
simply scalesthe ~ in Proposition6.3. Onthe otherhandsincethe actionof 1
is not scaled,the actionof the x generatorscanchangemoresignificantly. For
the presentexamplethe so-calledquantum-groupnormalizationfor the present
R-matrixrequiresan additionalfactorq ~in R~2.This meansa uniformfactor

q~in the as well as for the ~ib,ji?, ~, while ~ynowactsby a differentmulti-
pleof theidentity. This normalizationis the oneneededfor the representation
of BUq (g12) to descendto the quantumgroup Uq (s12), for which y becomes
proportionalto its quadraticCasimir.On the otherhand,we arenot tiedto this
considerationandhaveretainedthe normalizationthat seemsmoresuitablefor
thebraidedenvelopingbialgebra. 0

We see that whenq —÷ 1 the actionof the braided-vectorfields becomes
the usual actionby left-multiplication of the Lie algebraon the co-ordinate
functions,as it mustby the constructionsabove.On the otherhandfor general
q or othernon-standardR-matricesit is not possibleto write the actionsof our
braided-vectorfields as a matrixproductof theLie algebramatrixby thegroup
matrix. This phenomenonis well-known in the caseof super-Liealgebrasacting
by super-vector-fields.

Example6.6.For R~1(as in Example5.6 the matrix-braidedvectorfieldsare

1q
2 0 0 (q—q’)2\ ,0 0 1 —q2 0

~ ( 0 q2 0 0 ~ ( 0 0 0 q2 — 1
‘=1 0 0 1 0 2(~ 0 0 0

\000 1 / \00 0 0
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/ 0 (q—q~)2 0 0
02 ( 0 0 0 0

‘~q2l 0 0 (q—q~)2

\ 0 l—q2 0 0

1q
2+q2—l 0 0 (q—q~)2

4-2 1 0 q2+~2—l 0 0
02=( 0 0 q2 0

\ 0 0 0 q2
From this we obtain the action oftherescaledgenerators~ as

ab — a b ab — 0 0(~d) ~a = (~(1 _q2)a)~ (c d) ~b = (q2a q2b)

1a b’~ _(c —d+ (l—q
2)a~

1a b’~ - 2(a b
~c d)~~ ~0 (l—q

2)c 1’ ~c d)~~ q ~c d
As q —~ 1 this becomestheright actionofthesuper-liealgebra ~on thesuper-
algebra M

111.

Proof The stepsare similar to thosein_the precedingexample.This time as
q —* 1 onehasthe evenelementsa (and~)actingby matrix multiplicationand

a b —— 0 0 a b 1 0
(c d)~ -(1 0)(c d)(0 -1)’

a b —— 0 1 a b 1 0(~d)~ - (o 0)(c d)(0 1Y
Notethat this is a featureof super-Liealgebras;in the generalbraidedcase(as
whenq ~ 1) eventhe possibilityof a furthermatrix on the right handsidewill
not sufficefor arepresentationas a matrixproduct.Onecanverify directly that
theseactionsrepresentgl111 as super-derivations. 0

Thuswerecoveracompletegeometricpictureofbraided-Liealgebrasactingon
braided-commutativealgebrasof functions(i.e. aclassicalpicturebut braided).
The pictureunifies the familiar theoryof left-invariantvector fieldson groups,
super-groupsand its obviousgeneralizationssuchas to colour-derivationsetc
into a singleframeworkbasedon an R-matrix, i.e., as the semiclassicalpart of
a generalbraidedtheory.

7. Braided Killing form and the quadratic Casimir

In thissectionwegiveafinal applicationofournotionofbraided-Liealgebras,
namelyto thenotionof braided-Killing form andassociatedquadraticCasimir.
It will be Ad-invariantandbraided-symmetricin acertainsense.Like the last
section,ouraresultdependson thefact thatwehaveanactualfinite-dimensional
Lie-algebralike subspace£ or X andnot merelysomekind of Hopfalgebra.
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(a) W (b) B W B W

BW BW BW
A ~.. A

~

Fig. 14. Definition (a)of braided-traceTr ofamorphismW ® V-p.V and(b) proofof itscyclicity
propertyof invarianceunderacocommutativeactiono of anybraided-HopfalgebraB. Theextra

input W is optional.

As before,wedo the constructionfirst in acategoricalsettingwith diagrams,
and thenafterwardsdeduceandcomputethe matrix form. The idea behind
the braidedKilling form in the categoricalsettingis quite straightforward.In
anybraidedcategorywith dualsthereis a naturalnotion of braided-traceof an
endomorphism.Assumingthat£ hasa dualL* (akind of finite-dimensionality
condition)wedefinethebraided-Killingform viathebraided-tracein theadjoint
representationof U(L) on £ constructedin Proposition4.4. We beginwith the
braided-traceitself.

Proposition 7.1.For an object V in a braidedcategorywith dual V~,andany
morphism~‘: W® V —p v wedefinethebraidedtraceasthemap L(~):W -~ I
obtainedas shown in Fig. 14 (a). If B is a braided-Hopf algebra and acts co-
commutativelyby ci on V then I~(çb)is B-invariant in the mannershown in
(b).

Proof By definitionj~(q~)is a morphismW —~ las shownin (a).HereU and
n denoteevaluationV~® V -~ I andcoevaluationI —p V ® V* respectively.
In part (b) we supposethat a braided-Hopf algebra B actson V cocommuta-
tively. Thefirstequalityusesfunctorialityandthedouble-bendpropertyofduals
(compatibilitybetweenevaluationandcoevaluation,as usedabove in Proposi-
tion 6.1) to pull av down. Thesecondequalitycancelsthenewdouble-bendand
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alsopushes~ up. The third equalityis the braided-cocommutativityof B with
respectto V. We thenusefunctoriality to reorganise,andthata is an actionto
cancelusingthe braided-antipodeaxioms. 0

The invariancehereis ourbraided-analogof the usual‘cyclicity’ propertyof
the trace.Note alsothat W canbe anything,for exampleW = I andç~:V —s V
an endomorphism.We haveretainedthe extrainput W for greatergenerality.
In particular,if W = B and ~ = a then the invariancemeanspreciselythat
Tr(a) is Ad-invariant,wherea is the braided-adjointactionof Section3.

Proposition 7.2.Let £ be a braided-Liealgebra in the settingofSection4. We
defineits braided-Killingform g: £ o£ —~ I to be the braided-traceof the map

10 (id®[ , ]). In concrete terms this is

g(~oi~)=Tr([~,[~j, 1])

for ~, ~je £. If U(L) hasan antipodetheng is invariant under[, I as shownin
Fig. 15 (c). It is braided-symmetric as shown in Fig. 15 (d). Thebraided-Killing
form is definedon all ofU(L)o U(L) andhas descendantsT anddim(L) as
alsoshown.

Proof Thebraided-metricis definedasthebraided-traceofthe iteratedbraided-
adjoint action. This is well-definedas amorphism£0 £ —~ I but canalsobe
viewed as shownin (a) as the restrictionof a morphism U(L) 0 U(L) —~ I.
In this case,because[ , I is an action,we canunderstandit as multiplication
in U (L) followed by the braided-tracein thebraided-adjointrepresentation.In
this caseits Ad-invariancefollows at oncein (c) from the Ad-invarianceof T
provenin part (b). This in turn follows from the cyclicity of the braided-trace
provenin Proposition7.1. This assumesin the secondequalitythat U (L) hasa
braided-antipode,in which case[ , ] canbeidentified with thebraided-adjoint
actionas explainedin Section4. Part (d) is the braided-symmetryproperty.
The first equalityis the definitionof g, the secondis the extendedform of the
braided-Jacobiidentity in Section4. For the braided-symmetryonly on £ we
needonly thebraided-Jacobiidentityaxiom (Li). Finally,part (e) justifiesour
terminologyby showing how the property looks on the subspaceX C U (L)
wherethe coproductis as in Fig. 11. 0

Clearly the braided-Killingform is the sameas first multiplying in U (£) and
thenapplyingthe braided-traceto [ , I consideredas an actionof U (L) from
Proposition4.4. Also, if £ is of theform Li = 1 eX as discussedat the endof
Section4, wecanequallywell define

g,: X0 X —~ I
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(a) UL UL UL UL UL UL ur UL

= ~ * = = = I .~ Wm(L) =9
(b)

~ U UL UL UL UL UL UL UL UL UL (IL

It~~ = ~ = ~ ~ ~

(c) UL UL UL UL UL UL UL UL UL UL UL UL UL UL UL

I.~I’I ~ =j~
(d) uii UL UL UL UL UL UL (IL

I i~j~’ = = x x x

(e) xxx x~t x XX~k A

I ~ + ~ I + ~ = + I .~ =

Fig. 15. Definition (a) of braided-Killing form and its descendants(b), (c) proof of their
]-invarianceand (d) braided-symmetry.In the form (e) on X theselook morefamiliar..

in justthe sameway as]~([ , I (id o[ , J) restrictedto x ox. Both areuseful
in examples.Themetricon £ is somekind of ‘multiplicative’ Killing form while
g~is morelike the classicalone.Its diagrammaticpropertiesarein Fig. 15(e).

TheproofaboveassumesthatU(L) hasabraided-antipode.Ontheotherhand
the formulationof thepropositiondoesnot requirethis if we work with [ ,

insteadofanactualbraided-adjointaction.Thiswasthestrategyin Section4and
wetakethesameview here.Forexample,in thetensorsettingofProposition5.1
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we canassumethat the tensorsdefining the braided-Liealgebraare sufficiently
nice for £ to have a dual objectandfor the braided-Killing form to be [ , I-
invariant.We sayin this casethat the braided-Liealgebrais regular. Also, we
definetensorsfor g andthebraidedtrace,as well as the normalization~Irn(L)

by

g(u’ou~) = Tr([u’, [ui, I]) = gUI, (20)

Tr( [u’, ]) = T’, dim(L) = Tr(id). (21)

Theirpropertiesin tensorform arereadoff from the braid-diagramsjust as for
Proposition5.1. In particular,the invarianceandbraided-symmetryconditions
take the form

Al DJ B AM NK PQ ~J JK If ~rK ~IrJ
AB” M NC pC Qg = t~ g , C K’ =

~l J B AM PN If
‘-JAB MNC pg =g

andlikewise for g~andT~on the generatorsx’ = u1 — i~51.Thesearerelatedto
gUI andT’ by

= g(~I®~f)= ~ T,’ = T’—dim(L)~’.
(24)

Hereg andg~differ only by the braided-traceof the actionof 1 in oneor other
or bothof the inputs.Thefact thatthesemapsare all morphismsin the category
meansthattheyobeythe correspondingmorphismconditionsalongthe linesof
(LO) in Proposition5.1. Thus, T~obeysthe sameequationsas for ö~in (LO)
while g (and g,) obey

RK J M I AB If ~K I K J M AB If ~KMB LAg =g OL, AM B L~ _—g UL.

We havementionedin the proofof Proposition5.1 that the nicestsettingis
the onein whichthe constructionscanbe viewedas taking placein the category
of leftA (R)-comodules,or morepreciselyin thecategoryof A-comoduleswhere
A is adual-quasitriangularquotientof A (R). In the presentcontext onecould
demandalsothatA is aHopfalgebra.In this caseits categoryof comoduleshas
duals, so this is sufficient to havea quantumtrace.We do not want to limit
ourselvesto thiscase,but it is convenientfor generatingthe necessaryformulae
which canthenbeverified directly on the assumptionof suitablepropertiesfor
the structureconstants.To seethatthissuppositionimplies restrictionson A we
notethat in theseterms,the morphismpropertiesof 4, �, c,g are

I
4J Al A B I ~J ~I IJ K I J AB

t J’-’ KL = LI ABt Kt L, t JO = 0 , C Kt L = t At BC L,
gif = (l~(J~gAB, t’jT~= T’, (27)

wheret
1j is the matrix generatorof A(R).

Proposition 7.3.Let £ be a braided-Lie algebra ofthegeneraltensortypein Propo-
sition 5.1 andsupposethat it lives in the category of A-comodules as explained.
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Then
IJ IA JL ~K B ‘rI IJ ~K A ~• ~ ~jA~ Jg = c BC A” L K, I = C A” J K, siifli’~’—J = 1~ J K

where~denotes the second-inverse as above but applied nowto the multi-index R.

Proof We assumeherethatthecategoryin whichwe work is thebraidedtensor
categoryof left A-comoduleswhereA is a dual-quasitriangularHopf algebra
givenasaquotientof A(R). It hasatleasttheadditionalrelations(26) and(27)
as explained.Thefinite-dimensionalcomodulessuchas£ andX herethenhave
dualsin the categoryusingthe antipode.Fromthis onecomputesthe braiding
betweena basis {u’} of £ andadual basis{fj} say of L* in astandardway as
explainedin [12]. The {u’} transformas avectorunderthe matrix generator
of A(R) and {fj} as a covectorwith right-multiplication by the inversematrix
generator.This gives

W(u’®fj) = fK®u’R~j’L.

Usingthisfor thebraid-crossingin the diagrammaticdefinition of thebraided-
traceandbraided-Killingform andproceedingasin Proposition5.1 for the other
tensors,immediatelygives the resultsstated.Notethat the Tr that we usehere
is definedfor anyendomorphismçb’j by Tr(~) = q~B

4RKBAKjust as for the
usualquantumor braidedtraceassociatedto an R-matrix.We aresimply using
thisnow appliedto the endomorphismsbuilt from the structureconstantscL~K
of the braided-Liealgebra. 0

In ourmatrixexamplesofProposition5.2,all thedataarebasedonaninitial R-
matrixR’1

1’~
1.In thiscontextwehavealreadyintroducedthe notionfor quantum

groupsthatR is regularif A(R) hasaquotientHopfalgebraA which remains
dual-quasitriangular.In thiscaseB(R) hasaquotientwhich is indeedabraided-
Hopfalgebrawith braided-antipode.Relatedto this, U(L) = B(R) for thisclass
of matrix-braided-Liealgebrasis indeedregularin the senseabove.Ontheother
hand,we do not want to limit ourselvesto this case.In fact, it is sufficient to
supposethatR obeyscertainmatrix identitiesto arriveatthe sameconclusion.

Proposition 7.4.In our matrixexamplesofProposition5.2 we supposethat this
is regular in the sense that the initial R e M0 0 M~comes from a quantum group
obtained from A(R). Then the braided-Killing form g is given by

IJ IA JL 7)l)o a ~n c ctb ~d Ii
g =c BC A-” cn”db(J10”b1 a

in termsoftheinitial R anditssecond-inverseR. Herei.3’j = R
1/Ck ~. Similarly for

T’ anddim(L). IfR = R
0 + 0(h) theng~= 0(h

2).On the rescaledgenerators
= h~x’we have

g~J= g(y~’®yJ)= K’~+ 0(h), T = T(Z’) = 0(h)
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whereK’~definestheKilling form ofthe R0-Liealgebra in Proposition5.3 and
has its usualAd-invarianceand W-symmetryproperties(e.g. for usual, super or

colourLie algebrasetc). HereW = W (R0) is symmetric.Meanwhile,the braided
trace T on the rescaledgeneratorstendsto zero.

Proof One can either computeRKJAK for the particular matrix in Proposi-
tion 5.2, or computethe braiding W(u’ 0 f.j) betweena basiselementof u

1
anda dual-basiselementdirectly in the sameway that the braidingin Proposi-
tion 5.2 was obtainedin [13,171.For the lattercoursethe categoryin whichwe
work is thatof right A-comoduleswhereA is now a dual-quasitriangularHopf
algebraobtainedas aquotient of A(R) andRt

1/~~ihereis the initial R-matrix in
Proposition5.1. It is relatedto the generalsettingabovevia the bialgebramap
A(R) —s AcoP given by t’f s—s (St

t°
10)ti’,where (.)C0P denotesthe opposite

coproduct.This convertsthe left-comodulealgebrasin the generalsettinginto
right A-comodulealgebras.In the lattercategorytheelementsu transformunder
the right adjointcoactionu —~ t

1gij~usingacompactnotationwheret is thema-
trix generatorof A (R). This induceson the dual basis{f

1-’ } the transformation
f1i fmn o (Si’,, )S

21m,whereS is the antipode.Fromthisonehas

~P(u’°~
1of it)

= f~ki® u
1°

17~((Silo10) till 0 (Sthk1 )S2tk~10)

= fki o u
1°~7~(Silo

10 ®(Stak, )S
2tkOb)1~(t”~ o (St”a )S2tb

10)

= fki ®ubo/1~(tbo~0 tak, )~(t500Stk~~)~(t”d OS
2th

10 )~(td1 ® St’~)

= fki 0 u
1°~ Rt0~ak, RC~ (R) ~ dbjORd~l a = fK 0 uLR~f1L

wherein the last line we evaluatedthe dual-quasitriangularstructure7?. on the
matrix generators.This gives the matrix RKJ~~Lin this example(comparewith
the braiding in the proof of the previousproposition).Composingthis with
evaluationwehave

I \ ITII I s’ \ ~K I 010 a ~c m i 13\1fl h ~d it
/0 r !~U ®Jf) = 1~ J K = “ c ~ m bk”) d Jo” Ii a

DIçj a ac I 7) \ —in b ~d it ~ a on c ab id ii
= I’~. c n ~J b I~I~) d JQ.IX a = ~ c n~-~d b ~ 10” 1, a

where~3Cb = RCmmh is the matrix usedfor the quantumor braidedtraceas-
sociatedto the initial R-matrix. It obeys0

2(R)72
1i9j’ = Ri

2 andwe usethis
now. Puttingthis into the precedingpropositiongives the resultsstated.Note
thatmoregenerally,one cansupposethatR is bi-invertible andobeyssuitable
matrix identitiesto concludethe propositiondirectly.

Fromthis oneseesthe limit as R approachesa triangularsolutionR1,. From
Fig. 15 (e) we seethat the semiclassicalpart K of the braided-Killing form has
the familiar properties.Likewise for the braided-trace. E

Thus the braided-Killingform reducesnearthe triangularsolutions to the
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more usualnotion of Killing form which is Ad-invariantand !P-symmetricin
the morenaivesense.This includesof coursethe usualKilling form but holds
alsofor super-Liealgebrasandcolour-Lie algebras.In the latter caseswehave
not found this notion in the literature,perhapsbecauseit need not be non-
degenerateas we shall seein an example.In the formerstandardcasewe will
recoverthe usualKilling form which will be non-degenerateon the semisimple
part of the classicallimit. We find hereanunusualphenomenon:the processof
q-deformationcanmakea degenerateKilling form non-degenerate.

Example 7.5.In Example5.5 whereR = R&2 thebraided-Killingform andtrace
etcon £ is

q
4+q2—l 0 0 q4—q2+l

[41q 0 0 (l—q2)2 0

g_ q2 0 (qqi)2 0 0

q4—q2 + 1 0 0 q4—q2 + I + (1 —q2)2

= (1 + [3]q)ö1, dim(L) = [4]~ [n]~ =

Hereg is non-degenerateforgenericq. Thebraided-Killingform on the rescaled

7 withbasisç~,b, ~ ~iTis also non-degenerateforgenericq andgivenby

/[4]q[2]q 0 0 0
—— .~( 0 0 q2[4]q 0

g~—q 0 [4]q 0 0
\ 0 0 0 q2[3]q(l—q4)2

As q —s 1 it becomesthe usual Killing form on s1
2 and0 on the~7generator.

Proof This is adirectcomputationfrom Proposition7.2 or 7.3 (theresult it the
same).Note thatas q —~ 1 thebraided-Killingformsbecomesymmetricandthe
braided-tracesof they1 becomezeroas we shouldexpectfrom Proposition7.4.
0

It is remarkableherethat thebraided-Killing form on ourbraided-versionof
g12 is non-degeneratefor genericq. This reflectsthe fact that for genericq the
U(1) generator~ in Example5.5 did not fully decouplefrom thebraided-Lie
bracket.This is in spite of the fact that it is central in the braided-enveloping
algebra.

Example 7.6.In Example5.6 whereR = R5i,11, the braided-Killing form on £
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andon the7 basisa~,b, ~, ~ are

~l 0 0 l\ ~1 0 0 0
2 _22(0 00 0\ ~ Io 000

g=(qq ~ 00 oJ’ g~=—(1+q ~to 000
\i 0 0 1/ \o 0 0 0

T’ = —(q — q_i)
2oI, dim(L) = 0.

Proof This is likewise a direct computationfrom Proposition7.3 or 7.4. 0

The braided-dimensionbecomesas q —s 1 the super-dimensionfor the R-
matrix in thisexample.Henceits vanishingcorrespondsin the limit to theequal
numberof boseand fermi modesin the algebra. This is typical of vanishing
theoremsin super-symmetryand suggeststhat similar resultscan sometimes
extendto the braidedcase.A similar degeneracyof the braided-Killingform,
andvanishingof thebraideddimensionholdsfor othernon-standardR-matrices
(suchas the 8-vertexmodelsolution).On the otherhandnon-degeneracyas in
Example7.5 is typicalof the standardR-matricesassociatedto deformationsof
semisimpleLie algebras.

Armed with non-degeneracyin at leastsomecasesit is natural to definefor
invertible g~”,g~thecorrespondingquadraticCasimirsin U(L),

C = u’u~gIf, C,~= ~I~fg~~j (28)

wherethe matriceswith lower indicesarethe matrix inverses.This canalsobe
saiddiagrammatically.

Corollary 7.7.In thesettingofProposition7.2wesuppose that the braided-Killing
form has an inverse g: .1 —s £0£. Then this is [ , ]-invariant and the Casimir

0 g: 1—s U(L) is invariant and central in U(L). Moreover,the braided-Killing

form andits inverseallow us to identify £ and£* in the Category.

Proof The categoricalinverse(alsodenotedg) is definedvia Fig. 16 (a), along
with some relatedmaps.The corollary then follows at oncefrom the invari-
anceandbraided-symmetrypropertiesof the braided-Killingform in Fig. 15, as
shown.For simplicity we haveassumedfor the proofthat U(L) hasa braided-
antipode,but as in Proposition7.2we do not limit ourselvesto thiscase.In the
matrix exampleof Proposition5.2 with suitableR onecanprovethe invariance
of theinverse-Killingformdirectly.Also, usingthesemapswecanidentify £ with
L*, with the braided-Killingform asevaluationandits inverseas co-evaluation.
In this caseit is naturalto considerthetwist a andwehaveincludedin part (d)
oneof its interestingproperties. Li
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(a)~LJL~ ~

(hI ~f I. I = I . I = I

(C)

UL ° (IL (IL (IL (IL

(d) =
1A~~g =

Fig. 16. Definition (a) inversebraidedKilling form, braided-quadraticCasimirandassociatedtwist
morphism. [ , ]-invariance (b) of g implies invarianceandcentrality (c) of the braided-Casimir.

(d) is a propertyof the twist a relatedto braided-antisymmetryof thebracket.

Similar properties(with similar proofs)apply to the inverseg~:.1. —~ X 0 X

when this exists. The identification of £ with L* (or X with X*) when the
inversesexistmeansin tensorialtermsthatwe can usethe braided-metricand
its inverseto raiseandlower indicesin a familiar way.

Example7.8.For thebraided-Liealgebra in Example5.5 the quadratic Casimirs
definedfrom theinverseofthebraided-Killingform arecentralandtaketheform

— [
2]q (q6 _ q2 + l)q4 ( 2a +

— [41q(l q2)2 ~(1 + q2)(q8 + q4 — q2 + 1) q

(ad_q2cb))
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q
4 ~2 — — q2

C~= -~—(~—+b~+q2~b)+rzi 11

V~1q L’-Jq ~-‘iq~’ —q

As q —s 1 the s1
2-partofCx tendsto the usualquadraticCasimir and the U(l)

part tends to oc.

Proof This is by direct computationfrom the generatorsusingREDUCE. To
put the resultsinto the form shownwe madeextensiveuseof the relationsin
U (L) = BMq (2) from [171.We knowthat the resealedgeneratorstendin the
classicallimit to g12.We seethat thenaturalbraidedCasimirtendsto the usual
quadraticCasimirfor the sl2 partwhile the U (1) part blowsup in termsof the
resealedgenerator~J.Note thatthe two termsin Cx areseparatelycentralfor all
q so onecansubtractoff this divergentpartif desired. Li

Moreover, for q ~ 1 andthe standardR-matriceswe can put herethe form
u = l+51 andrecoverfrom C the (squareof the) quantumquadraticCasimir
knownpreviouslyby othermethods.On the otherhandourconstructionis not
tiedto suchstandardcases.

This completesour developmentof the basictheoryof braided-Liealgebras
andsometypicalexamples.Furtherapplicationsandexampleswill bedeveloped
elsewhere.The phenomenonseenherefor the braidedversion of g12 canbe
expectedquite generallyand is part of one setof potentialapplicationsof the
theory,namelyto aprocessthat can be called ‘q-regularization’of singularities.
The singularityof the inverse-Killing form for gl2 is resolvedby q-deformation
in our braidedcontext, as a pole at q = 1. The regularizationof infinities
in physics is one of the motivationsfor q-deformedphysics andq-deformed
geometry(anotheris interestingphenomenaat roots of unity).

For one possiblephysicalapplicationof theseconstructionswe note thatwe
have introduceda generalquantum-groupgaugetheory in [1], which should
adapt (by transmutation)to our braided-setting.The gaugefields of such a
theory shouldtakevalues in a braided-Liealgebra£ or X andthe Yang-Mills
Lagrangianshouldinvolve the braided-Killingform as above.In such atheory
the SU(2) x U (1) of the standardmodel could be unified for q ~ 1 with the
U(1) modenot decouplingfrom the SU(2) modein the bareLagrangian.After
renormalizationthe zeroin the braided-Killing form abovefor the U(1) mode
maystill leavea residueas the q-regularizationis removed.

Foranotherdirectionwe notethatthequadraticCasimirsbecomerepresented
as differentialoperatorson the braided-groupfunctionalgebrasaswe haveseen
in Section6. Thus

= 0~gIf, Dx = D’D~g~jj (29)

should play the role of Laplacianin somekind of braided-geometryof which
the braided-groupsarethe simplestexamples.They could perhapsbe usedas
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propagatorsin someform of braidedor q-deformedphysics.Again, onewould
havein mind someinteractionwith the processof renormalization,whereq is
regardedas a regularizationparameterandset to I at the end.It may alsobe
thatq ~ 1 couldbeusedasa modeloffeedbackto thegeometrydueto quantum
effectsin the contextof Planckscalephysics.

Relatedto theseconsiderationswe note that thereare further examplesof
braidedHopf algebrasassociatedto the quantumplaneand to the braided-
Heisenbergalgebras[111, as well as possibly to the infinite-dimensionalex-
changealgebrasin conformalfield theory— onewould like to knowif theyhave
abraided-Liealgebraunderlyingthem.Thedeformationofbraided-Liealgebras
via braided-Poissonbracketsis a furtherquestionrelatedto these.

Apart from thesephysicaldirections,thereareof avariety of naturalmathe-
matical questionsalso to be addressed.The long term goal is to developthe
differential geometryof braidedgroupswith braided-Lie algebrasandother
braided-geometricalconstructionsin analogywith the classicaltheory. In this
paperwehavetakensomeof thefirst stepsin suchaprogramme.We introduced
brackets,vector-fieldor matrix realizationsandKilling forms for them in some
generality.We recoverusualnotionsfrom anyregularR-matrix,whichneednot
be a standarddeformationof the identity. The theory interpolatesandunifies
with superandotherLie-algebraconstructionsalso.Moreover,evenin thestan-
dardcasewe havefoundsomeunusualphenomenaconcerningthe removalof
degeneracy.
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